ΗΙΟΚΙ

Improve Power Conversion Efficiency

From DC to 2 MHz, industry's proven solution for high-accuracy power analysis. The High Accuracy Power Analyzer.

Upgrade New current sensors Engineered for more accurate power measurement

CE

<u>3year</u> Warranty

Improved frequency bandwidth and accuracy

Scan QR Code to Watch Video

Full-featured compatibility with current sensors

Current sensing has a substantial impact on power measurement accuracy as well as work efficiency. Hioki designs and develops its current sensors in-house for maximum compatibility with power analyzers and advanced power measurement capability.

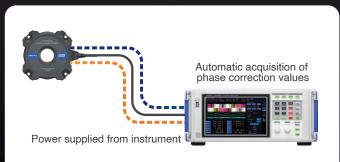
1 Get started making measurements right away

Standard current sensor power supply and recognition functionality

The PW6001 supplies power to current sensors and automatically sets the appropriate scaling ratio for each. Simply connect sensors and get started making measurements.

Accurately measure high-frequency, low-power-factor power

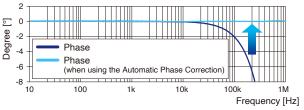
Current sensor automatic phase correction function

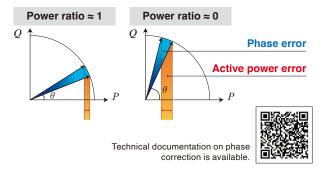

Correcting phase error is important in order to accurately measure high-frequency, low-power-factor power. The PW6001 automatically acquires each current sensor's phase characteristics and performs phase correction with a resolution of 0.001°. As a result, the instrument is able to realize current sensors' full performance without requiring a troublesome configuration process.

Record measurement conditions

Automatic acquisition of current sensor information

When you connect a current sensor to the PW6001, the instrument automatically acquires its model and serial number.


Detailed measurement conditions can be recorded along with measurement data.


Information stored in the current sensors' internal memory

Phase shift	Rated current
Sensor model	Serial number

Example of the automatic phase correction for the CT6904A AC/DC current sensor

At low power factors, phase error has a substantial impact on power error

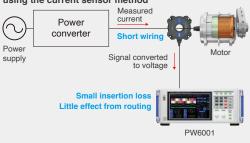
4 Extensive product line

EV inverter system R&D Evaluation of reactor and transformer loss

Pass-through sensors offer the ultimate level of accuracy, frequency band, and stability. Broadband measurement of up to 10 MHz and the ability to measure large currents of up to 2000 A make these sensors ideal for use in state-of-the-art R&D.

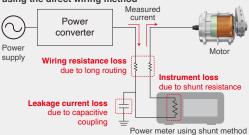
> WLTP-compliant fuel economy (electricity cost) performance testing

This clamp-style sensor lets you quickly and easily connect the instrument for measurement. It's used in testing of assembled vehicles where it would be difficult to cut wires. Capable of withstanding temperatures of -40°C to 85°C, the device can be used in the hot environment of an engine compartment.



Our proprietary DCCT method allows our 50 A direct-wired sensor to deliver world-class accuracy and bandwidth.

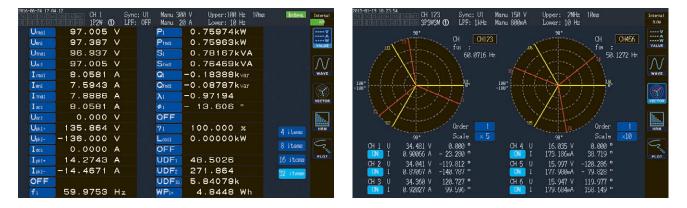
Are you making measurements under conditions that approach the actual operating environment?


Broadly speaking, there are two ways to detect current: the current sensor method and the direct wiring method. Current sensors let you evaluate equipment accurately under wiring conditions that approach the actual operating environment.

Measurement example using the current sensor method

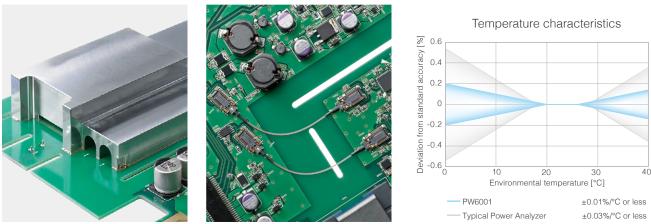
A current sensor is connected to the wiring on the measurement target. This reduces the effects of wiring and loss on the side of the measurement instrument. This allows measurements with wiring conditions that are close to the actual operating environment of a highly efficient system.

Measurement example using the direct wiring method



The wiring of the measurement target is routed for connecting to the current input terminal. However, this results in an increase in the influence of power loss from wiring resistance and capacitive coupling, and meter loss ing due to shunt resistance. All of this loss leads to larger degradation in accuracy.

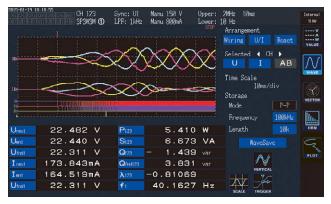
Achieving true power analysis


DC, 0.1 Hz to 2 MHz frequency bandwidth Obtain even greater accuracy in high-frequency power measurements with the aid of Hioki's current sensor phase shift function

A wide frequency range is required for power measurement due to the acceleration of switching devices, especially SiC. High accuracy, broadband, and high stability. The PW6001's world-class technology-based fundamental performance makes in-depth power analysis a reality.

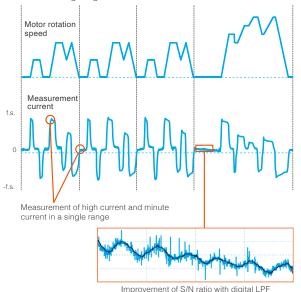
±0.02%* basic accuracy for power Strengthened resistance to noise and temperature fluctuations in the absolute pursuit of measurement stability

The custom-shaped solid shield made completely of finely finished metal and optical isolation devices used to maintain sufficient creepage distance from the input terminals dramatically improve noise resistance, provide optimal stability, and achieve a CMRR performance of 80 dB/100 kHz. Add the superior temperature characteristics of ±0.01%/°C and you now have access to a power analyzer that delivers top-of-the-line measurement stability.


Solid shield

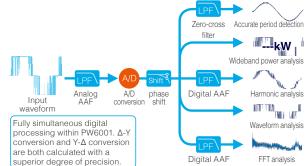
Optical isolation device

18-bit resolution, 5 MS/s sampling


Measurements based on sampling theorem are required to perform an accurate power analysis of PWM waveforms. The Hioki PW6001 features direct sampling of input signals at 5 MS/s, resulting in a measurement band of 2 MHz. This enables analysis without aliasing error.

TrueHD 18-bit converter* measures widely fluctuating loads with extreme accuracy

Measurements based on sampling theorem are required to perform an accurate power analysis of PWM waveforms. The Hioki PW6001 features direct sampling of input signals at 5 MS/s, resulting in a measurement band of 2 MHz. This enables analysis without aliasing error.


Conversion efficiency measurement during mode measurement without switching ranges

*True HD : True High Definition

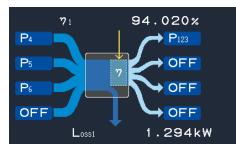
Achieve lightning fast calculations for 5 independent signal paths at the same time with the Power Analysis Engine II

Calculations for up to five independent signal paths (period detection/broadband power analysis/ harmonic analysis/waveform analysis/FFT analysis) are independently and digitally processed, eliminating any effects one may have on another. Achieve a 10 ms data update speed while maintaining full accuracy through high-speed processing.

* AAF (Anti-aliasing filter): This filter prevents aliasing errors during sampling.

Functions and Characteristics

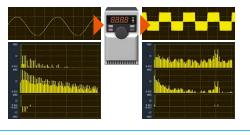
Max Speed 10 ms, Maximum 12 ch* High Accuracy Power Calculation


Data updates in 10 ms to 200 ms. Make high speed calculations while maintaining high accuracy. Achieve measurement stability with original digital filter technology, and measure power after automatically tracking frequency fluctuations from 0.1 Hz.

2816-86-24 17 8	4-12 CH 1 1P2W (Sync: U1 D LPF: OFF	Manu 3 Manu 3		he Interal
Urasi	97.005		Pi	0.75974kW	¥
Uant	97.387		Pred	0.75963kW	
Undt	96.937		Si	0.78167kVA	
Uaci	97.005		Sfndt	0.76469kVA	\wedge
Iresi	8.0581	А	Q:	-0.18388kvar	WAVE
Innt	7.5943	A	Qrodt	-0.08787kvar	a
I fedt	7.8886	A		-0.97194	VEDTO
Iact	8.0581	A	\$ 1	- 13.606 °	
Udc1	0.000		OFF		(tte-
Upi.1-	135.864		71	100.000 %	4 items
Upta-	-136.000		Lossi	0.00000kW	8 items
I det	0.0000	A	OFF		8 Itelle
I pk1-	14.2743	A	UDF	48.5026	16 itens
I pa1-	-14.4671	A	UDF2	271.864	32 Literat
OFF			UDF16	5.84079k	
fi	59.9753	Hz	WPi-	4.8448 Wh	

* Two 6-channel model devices, during synchronized function usage

Simple, high-precision efficiency and loss calculations

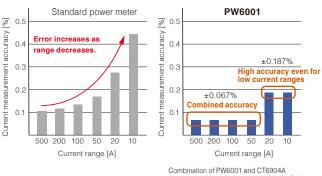

When measuring DC/AC converter efficiency, accuracy is required not only for AC but also DC. The basic DC measurement accuracy of the PW6001 is $\pm 0.02\%$, enabling you to make accurate and stable efficiency measurements.

Setting up efficiency calculation formulas for power conditioners and similar equipment is simple on the dedicated screen. Simultaneously display loss and efficiency calculations for a maximum of four systems.

Independent harmonic analysis for a maximum of 6 systems (wideband/IEC)

0.1 Hz to 300 kHz fundamental frequency, 1.5 MHz analyzable bandwidth. Comes equipped with IEC61000-4-7-compliant harmonic analysis and up to 100th order wideband harmonic analysis.

Synchronize inverter input/output and each fundamental wave

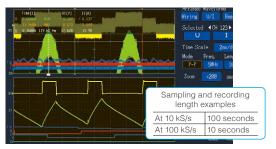

Applications

- Motor fundamental wave analysis
- Wireless power transmission waveforms
- Measuring distortion ratio of power conditioner output waveforms

Achieve high accuracy measurement, including in low current ranges

When used with a high accuracy current sensor*1, the PW6001 delivers exceptional accuracy*2. Achieve high accuracy measurement regardless of range, from high to low currents, even for loads that exhibit significant fluctuation.

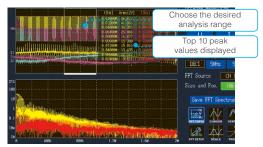
Example of combination accuracy with current sensor


Accuracy achieved when measuring the fullscale current in each range, 45 Hz to 65 Hz.

*1 Pass-through type: CT6872, CT6873, CT6875A, CT6876A, CT6877A, CT6904A Clamp type: CT6841A, CT6843A, CT6844A, CT6845A, CT6846A Direct connection type: PW9100A

*2 At DC and 50 Hz/60 Hz

Large-capacity waveform storage for oscilloscope and PQA-level waveform analysis

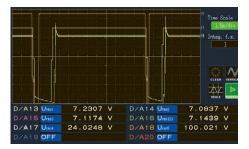

Waveform Storage of 1 MWord \times (voltage-current 6 ch + Motor Analysis 4 ch). The torque sensor and encoder signals are displayed along with the voltage and current waveforms.

In addition to the level trigger function, the new event trigger starts recording when there is a fluctuation in RMS values or frequency. Cursor measurement and waveform zoom functions also render oscilloscopes unnecessary for waveform analysis.


FFT analysis of target waveforms

Analyze frequencies up to 2 MHz across 2 channels. Specify any waveform analysis range you like and view the 10 highest peak values and frequencies. Observe frequency components that do not show up in harmonics and save the measured results.

Flat Frequency Characteristics


Frequency characteristics are flat up to 1 MHz even when the power factor is zero. Use together with the Current Sensor Phase Shift Function (see right) to make highly accurate low power factor measurements of high-frequency waves. It can very useful for assessing loss in high-frequency components like transformers and reactors.

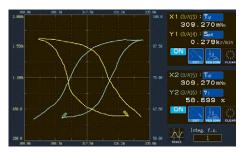
* Options to further improve high-frequency wave phase characteristics available. . Contact us for more information

D/A Monitor

View up to 8 channels of progressive fluctuations in measured values. Voltage, current, power, frequency and other parameters are updated at the fastest rate of 10 ms, allowing you to observe even the tiniest variations.

Applications

Power conditioner FRT Analysis

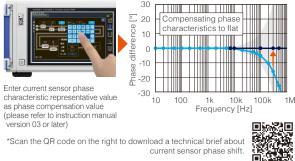

Motor Transient State Power Analysis

FRT (Fault Ride Through) :

Ability to continue operation despite system disturbance in the power conditioner or similar systems

X-Y Plot

Easily check correlations in measured values for up to two systems simultaneously. Plot physical quantities other than measured values as well by using it together with the user defined calculation function.


Applications

- Motor characteristics analysis
- Transformer characteristics analysis
- Power conditioner MPPT Analysis

MPPT: Maximum Power Point Tracker

Current Sensor Phase Shift Function

Our original virtual oversampling technology evolved ! It allows for phase compensation equivalent to that of a 2 GS/s oscilloscope a reality while maintaining 5 MS/s 18-bit high resolution. With this function, you can perform current sensor phase compensation with a 0.01° resolution, and measure power more accurately. This also makes high frequency, low power factor power measurements more accurate than ever before.

Complex calculation formulas settable on the device

Set equations to compute measurement values any way you want. Enter up to 16 calculation formulas, including functions like sin and log. Calculation results can be used as parameters for other calculation formulas, enabling complex analysis.

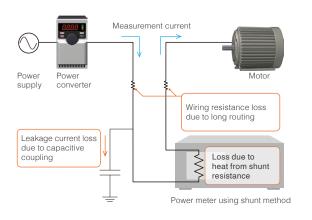
Applications

 Calculate multisystem efficiency and loss with solar power modules and similar equipment

Calculate Ld.Lq for motor vector control

Supports various power analysis systems

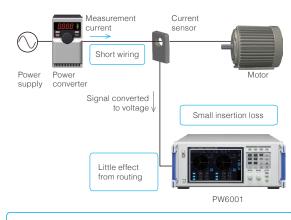
Improved connectivity to PCs over LAN. Remotely operate the PW6001 using a browser from any PC, tablet, or smartphone via the HTTP server function. Acquire files through the network with the FTP server function. LabVIEW driver and MATLAB Toolkit are also available.


* LabVIEW is a registered trademark of NATIONAL INSTRUMENTS *MATLAB is a registered trademark of Mathworks, Inc.

Specially designed for current sensors to achieve highly precise measurement

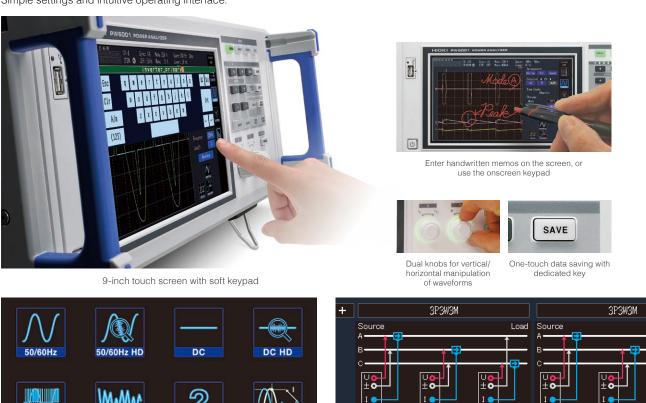
With direct wire connection method

The wiring of the measurement target is routed for connecting to the current input terminal. However, this results in an increase in the effects of wiring resistance and capacitive coupling, and meter loss occurs due to shunt resistance, all of which lead to larger accuracy uncertainty.


Measurement example using the direct wire connection method

Advantages of current sensor method

A current sensor is connected to the wiring on the measurement target. This reduces the effects of wiring and meter loss, allowing measurements with wiring conditions that are close to the actual operating environment for a highly efficient system.


Measurement example using the current sensor method

Compared to the direct wire connection method, measurement with conditions closer to the actual operation environment of a power converter is achieved.

Seamless operability

Simple settings and intuitive operating interface.

Quick Configuration screen*

Wiring confirmation function, to avoid wiring mistakes

ohe1

104.5 V U4

310.6mA

2.790 V

0.010 A

0.299

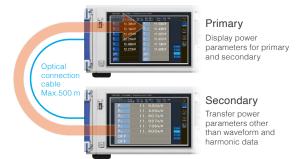
0.005

* A low power factor measurement (LOW PF) mode for easily setting reactor and transformer loss measurement has been added.

104.3 V

286.9mA

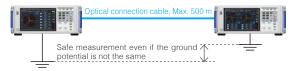
104.5 V


283 1mA

U1

Τ1

Build a 12-channel power meter using "numerical synchronization"

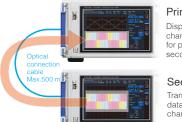

For multi-point measurements, use the numerical synchronization function to transfer power parameters from the secondary device to aggregate at the primary in real-time, essentially enabling you to build a 12-channel power analysis system

- Real-time display of secondary instrument measurement values on primary instrument screen
- Real-time efficiency and loss calculations between primary and secondary instruments
- Save data for 2 units on recording media in primary instrument
- Use the secondary's measured values on the primary's user-defined calculations

Measure phase difference between 2 separate points

Use the waveform synchronization function to measure the phase relationship between 2 points separated by a maximum distance of 500 m. Due to insulation with an optical connection cable, measurement can be performed safely even if the ground potential between the 2 points is not the same.

Wide range of Motor Analysis functions


(Motor Analysis and D/A output model)

Enter signals from torque meters and speed meters to measure motor power. In addition to motor parameters such as motor power and electrical angle, output signals from insolation meters and wind speed meters can also be measured.

				<u> </u>		
Operati	ng mode	Single	Dual	Independent input		
CHA ANALOG PALAE 2 20V	ch A	Torque	Torque	Voltage/ Pulse		
	ch B	Encoder A phase signal	Torque	Voltage/ Pulse		
	ch C	Encoder B phase signal	RPM	Pulse Pulse		
	ch D	Encoder Z phase signal	RPM			
Measurem	nent targets	Motor x 1	Motor x 2, Motors, transmissions, etc.	Pyranometer/ anemometer and other output signals		
Measurement parameters		Electric angle Rotation direction Motor power RPM Torque Slip	Motor power x 2 RPM x 2 Torque x 2 Slip x 2	Voltage × 2 & Pulse × 2 or Pulse × 4		

Simply transfer waveforms with "waveform synchronization"

Data sampled at 18 bits and 5 MS/s is sent between instruments in real time*, and the waveform measured by the secondary is displayed as-is on the primary instrument. This functionality lets you use the power analyzers to measure the voltage phase difference between two remote locations, for example at power substations, manufacturing plants, or railroad facilities.

Primary

Display max. 6 channels of waveforms for primary and secondary

Secondary

Transfer waveform data for max. 3 channels

- Real-time display of secondary instrument waveforms on primary instrument screen
- Harmonic analysis and fundamental wave analysis for primary instrument and secondary instrument
- Simultaneously measure waveforms on primary device while using the secondary to trigger
- D/A output of the secondary instrument's waveform from the primary instrument

*For both primary instruments and secondary instrument, waveform synchronization operates only when there are 3 or more channels. Max. ±5 sampling error.

D/A output waveforms captured 500m away

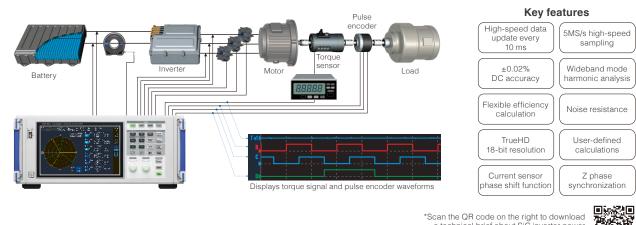
Transfer voltage/current waveforms taken by the secondary instrument located as far as 500m away and output the signals from the primary device. When combined with a Hioki MEMORY HiCORDER, timing tests and simultaneous analysis of multiple channels for 3-phase power are possible.


Max. analog 32 channels + logic 32 channels MEMORY HiCORDER MR8827

* The waveform that is output has a delay of 7 μs to 12 μs, depending on the distance.

Analog Output and 1 MS/s Waveform Output

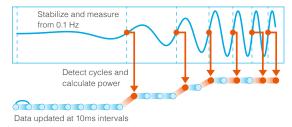
(Motor Analysis and D/A output model)


Output analog measurement data at update rates of up to 10ms. Combine with a data logger to record long-term fluctuations, and use the built-in waveform output function to output voltage and current at 1 MS/s*.

*During waveform output, accurate reproduction is possible at an output of 1 MS/s and with a sine wave up to 50 kHz.

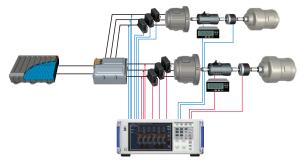
Applications

EV/HEV inverter and motor analysis


a technical brief about SiC inverter power measurements.

Calculate transient state power with 10 ms high accuracy and high speed

Measure power transient states, including motor operations such as starting and accelerating, at 10 ms update rates. Automatically measure and keep up with power with fluctuating frequencies as low as 0.1 Hz.


Further more, after a recent update, power calculation is now done every revolution of the motor, making efficiency calculations more stable than ever.

Even during frequency fluctuations from low to high, the fundamental waveform is automatically pursued. Comes equipped with Δ -Y and Y- Δ conversion while calculating with a high degree of accuracy.

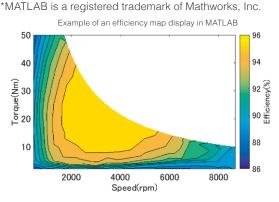
Simultaneous measurement of 2 motor powers

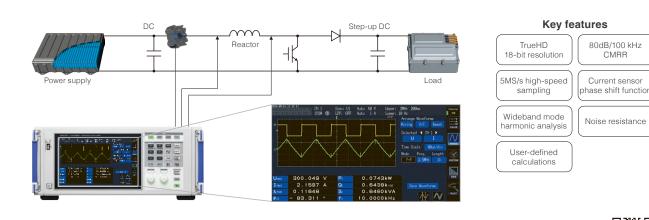
The PW6001 is engineered with the industry's first built-in dual mode motor analysis function that delivers the simultaneous analysis of 2 motors. Simultaneous measurement of the motor power for HEV driving and power generation is now possible.

Example of 2 motor measurement

Advanced electrical angle measurement function

Comes equipped with electrical angle measurement necessary for vector control analysis via dq coordination systems as well as high efficiency synchronous motor parameter measurements. Measure voltage and current fundamental wave components based on encoder pulses in real time. In addition, analyze 4 quadrants of torque and rotation through detecting the forward/ reverse from A-phasic and B-phasic pulses.

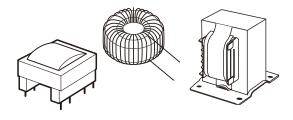



*Scan the QR codes on the right to download technical briefs about electrical angle measurements.

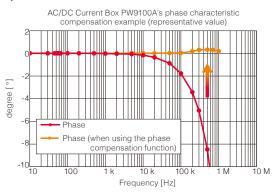
Evaluate inverter motor efficiency and loss

Evaluate efficiency and loss for an inverter, motor, and overall system by simultaneously measuring the inverter's input and output power and the motor's output. You can also create an efficiency map or loss map in MATLAB using measurement results recorded by the PW6001 at each operating point.

Chopper circuit reactor loss measurement


*Scan the QR code on the right to download a technical brief about reactor loss measurements

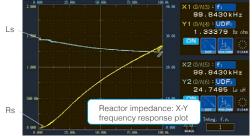
High-frequency and low power factor device evaluation


Reactors are used for high harmonic current suppression as well as the voltage step up/down of chopper circuits. The PW6001's outstanding high frequency characteristics, high-speed sampling, and noise-suppressing performance are effective in evaluating high-frequency, low power factor devices (reactors, transformers, etc.).

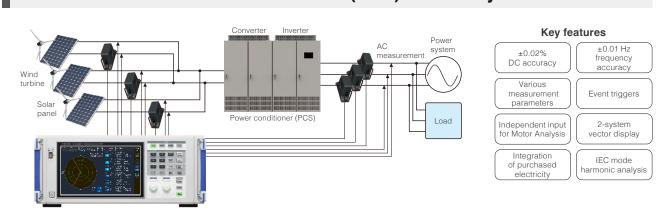
The low power factor measurement (LOW PF) mode in the simple setting mode makes measurement faster.

Current Sensor Phase Shift Function

In addition to the PW6001's flat, broad frequency characteristics, sensor phase error compensation allows highly accurate high-frequency and low power factor device analysis.


Harmonic analysis synchronized with switching frequencies

With the PW6001 you can perform harmonic analysis of fundamental waves up to 300 kHz with a band frequency of 1.5 MHz. For reactors used by chopper circuits, measure phase angles and RMS values for the current and voltage of each harmonic order through harmonic analysis synchronized with the switching frequency.


Circuit impedance analysis

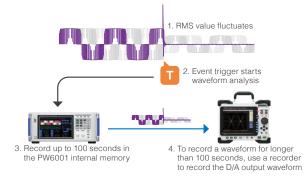
Calculate circuit impedance, resistance, and inductance by using harmonic analysis results and user defined calculations. X-Y plot functions are especially effective for impedance analysis.

Impedance Z [Ω]

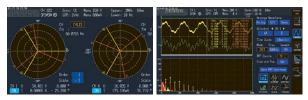
- = fundamental frequency voltage / fundamental frequency current Serial resistance RS [Ω]
- = Z × cos (voltage phase angle current phase angle)
 Serial inductance Ls [H]
- = Z × sin (voltage phase angle current phase angle) / (2 × π × frequency)

PV/Wind turbine Power Conditioner (PCS) Efficiency Measurement

Supports PCS-specific measurements

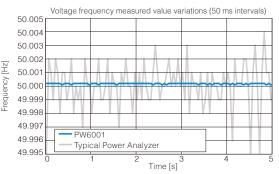

Simultaneously display the necessary parameters for PCS such as efficiency, loss, fundamental wave reactive power Qfnd, DC ripple ratio, three-phrase unbalanced factor, etc. Easily check the required measured items for improved test efficiency. In addition, by setting the DC power sync source to the output AC power channel, you can perform DC output and stable efficiency measurements perfectly synchronized with the output AC.

P4: DC power (panel output) P123: 3-phase power (power conditioner output) Urf4: Ripple rate η1: Conversion efficiency f1: Frequency Uthd1: Voltage total harmonic distortion Uunb123: Unbalance rate Qfnd123: Fundamental wave reactive power

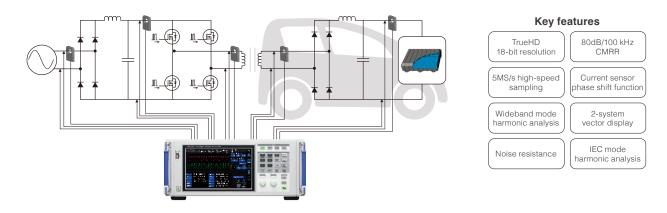

Use event triggers to analyze waveforms

An event trigger function is now available with Ver.3.00. Set triggers for up to four measurement items, such as RMS value and frequency, and record waveforms during an event for up to 100 seconds. If you need to record waveforms for more than 100 seconds, use the D/A output function (Motor Analysis & D/A output option) to observe and record waveforms with a recorder, simplifying the evaluation system. (It is not necessary to connect a differential probe or current probe to the recorder.)

Harmonic analysis and conductive noise evaluation


The PW6001 can perform IEC standard-based harmonic measurements that comply with IEC 61000-4-7. In wind power generation, where the generator hardware and grid operate at different frequencies, dual vector displays let you identify the tri-phase equilibrium at a glance. In addition, FFT analysis lets you to evaluate conductive noise generated by devices such as switching power supplies from 2 kHz to 150 kHz.

Measure output harmonics and noise through input waveform FFT analysis


Voltage frequency measurement fundamental accuracy of ± 0.01 Hz*

Perform frequency measurements required for each PCS test with world-class accuracy and stability. Achieve highly accurate frequency measurement values for a maximum of 6 ch (12 ch when there are two devices) while measuring each parameter at the same time.

* ±0.01 Hz fundamental accuracy is defined for cases where the data update is over 50 ms. Please contact us for even more precise frequency measurement.

Measure the efficiency of wireless power transmission (WPT)

Accurate measurement, even of lowpower-factor power

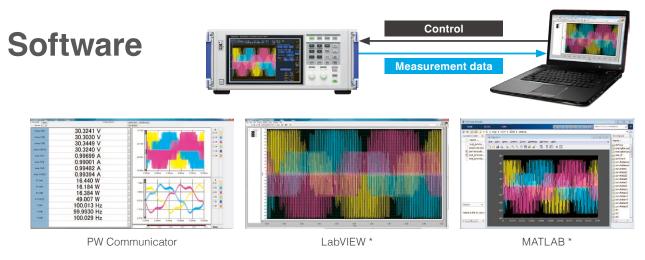
In wireless power transfer / transmission (WPT), the inductance component of the energy transmit and receive elements lowers the power factor. The PW6001's current sensor phase shift function can be used to accurately measure high-frequency, low-power-factor power. In WPT measurement, it's extremely effective to combine the PW6001 with a high-bandwidth current measurement tool.

Frequency band: DC to 3.5 MHz (-3 dB) PW9100A

Frequency band: DC to 4 MHz CT6904A

Analyze transmission frequency harmonics

The PW6001's harmonic analysis function can analyze fundamental harmonics of up to 300 kHz at a bandwidth of up to 1.5 MHz. For example, with a circuit that uses an 85 kHz band switching frequency (a frequency that could be used in power transmission in electric vehicle applications) as the fundamental harmonic, the analyzer is capable of simultaneously measuring voltage, current, power, and phase angle for both receive and transmit through the 15th order.


Harmonic bar graph display

Harmonic two-circuit vector display

Interfaces Names of parts

USB flash	drive		RS-232C, External I/O GP-IB LAN Synchronous control D/A output Motor Analysis Input Current probe input		
GP-IB	Data viewable through dedicated application Command control	Synchronous control	Optical connection cable connector, Duplex-LC (2- core)		
	Data viewable through dedicated application Command control Bluetooth® logger connection	D/A output (PW6001-11 to 16 only)	Switching for 20 channels of analog output or maximum 12 channels of waveform + 8 channels of analog output		
	Send the D/A output of values measured with the PW6001 (maximum of 8 items) wirelessly to the Hioki Wireless Logging Station LR8410 using the	Current probe input component	Power can also be supplied from the PW6001 to Probe1 or Probe2 by using the sliding cover.		
RS-232C	dedicated cable and Bluetooth® serial conversion adapter. (Approx. 30m* line of sight)The observable output resolution is dependent on the LR8410's resolution. * The presence of obstructions (walls, metal, etc.)	Motor Analysis input component	Input signals from torque meters or rotation meters to measure motor power. Measure motor signals including electric angle and motor power from instruments such as actinometers and anemometers.		
	 The presence of obstructions (wails, metal, etc.) may shorten the communication range or destabilize the signal. * Bluetooth® is a trademark of Bluetooth SIG, Inc. and licensed for use by HIOKI E.E. CORPORATION. 	USB flash drive	Save waveform data/measured data (csv) Save screen copy (bmp) Save interval data (csv) in real time at the fastest interval of 10 ms		
External I/O	START/ STOP/ DATA RESET control Terminals shared with RS-232C, ±5 V/200 mA power supply possible	64 MB internal memory	Save interval data and send it to a USB flash drive later		
LAN	Gbit LAN supported Command control	Download	d the communication command manual from the HIOKI website at		

Download the communication command manual from the HIOKI website at www.hioki.com

PC Communication Software – PW Communicator

View data in free dedicated application

PC Communicator is a free application that connects to the PW6001 via a communications interface (Ethernet, RS-232C, or GP-IB), making it easy to configure the instrument's settings and to monitor or save measured values and waveform data from a computer. The software can simultaneously connect to up to 8 Hioki power measuring instruments, including the PW6001, Power Analyzer PW3390, Power Meter PW3335, PW3336, and PW3337, and it can provide integrated control over multiple models. The software can also be used to simultaneously save measurement data on the computer and calculate efficiency between instruments.

LabVIEW driver and MATLAB toolkit

Hioki's LabVIEW driver and MATLAB toolkit can be used to build data collection and measurement systems. We also offer a number of sample programs to help you get started.

*LabVIEW is a registered trademark of National Instruments.

*MATLAB is a registered trademark of Mathworks, Inc.

GENNECT One SF4000

The SF4000 is a free application software that lets you display and save measurement data on a PC in real-time after connecting the PW6001 to the PC via Ethernet.

The application is also compatible with other Hioki measuring instruments such as Memory HiLogger LR8450 and the Wireless Logging Station LR8410, letting you connect up to 30 units at the same time to monitor, graph and display lists of measured values from multiple instruments all at once and in real-time. This is especially effective for performing a total analysis of power, temperature and other factors of equipment.

Download the software and drivers from the HIOKI website at

www.hioki.com

Power analyzer lineup

	Model	PW6001	PW8001+U7005	PW8001+U7001	PW3390
Applications		For measurement of high-efficiency IGBT inverters	For measurement of SiC and GaN inverters and reactor/transformer loss	For measurement of high-efficiency IGBT inverters and solar inverters	Balance of high accuracy and portability
	Appearance				
	Measurement frequency band	DC, 0.1 Hz to 2 MHz	DC, 0.1 Hz to 5 MHz	DC, 0.1 Hz to 1 MHz	DC, 0.5 Hz to 200 kHz
	Basic accuracy for 50/60 Hz power	±(0.02% of reading + 0.03% of range)	±(0.01% of reading + 0.02% of range)	±(0.02% of reading + 0.05% of range)	±(0.04% of reading + 0.05% of range)
	Accuracy for DC power	±(0.02% of reading + 0.05% of range)	±(0.02% of reading + 0.03% of range)	±(0.02% of reading + 0.05% of range)	±(0.05% of reading + 0.07% of range)
	Accuracy for 10 kHz power	±(0.15% of reading + 0.1% of range)	±(0.05% of reading + 0.05% of range)	±(0.2% of reading + 0.05% of range)	±(0.2% of reading + 0.1% of range)
	Accuracy for 50 kHz power	±(0.15% of reading + 0.1% of range)	±(0.15% of reading + 0.05% of range)	±(0.4% of reading + 0.1% of range)	±(0.4% of reading + 0.3% of range)
ers.	Number of power measurement channels	1 to 6 channels, a specify when ordering		specify U7001 or order (mixed available)	4 channels
me	Voltage, current ADC sampling	18-bit, 5 MHz	18-bit, 15 MHz	16-bit, 2.5 MHz	16-bit, 500 kHz
n tpara	Voltage range	6 V/15 V/30 V/60 V/150 V/ 300 V/600 V/1500 V	6 V/15 V/30 V/60 V/150	V/ 300 V/600 V/1500 V	15 V/30 V/60 V/150 V/ 300 V/600 V/1500V
Measuremen tparameters	Current range	Probe 1: 100 mA to 2000 A (6 ranges, based on sensor) Probe 2: 100 mV, 200 mV, 500 mV, 1 V, 2 V, 5 V	100 mA to 2000 A (6 ranges, based on sensor)	Probe 1: 100 mA to 2000 A (6 ranges, based on sensor) Probe 2: 100 mV, 200 mV, 500 mV, 1 V, 2 V, 5 V	100 mA to 8000 A (6 ranges, based on sensor)
	Common-mode voltage rejection ratio	50/60 Hz: 100 dB or greater 100 kHz: 80 dB typical	50/60 Hz: 120 dB or greater 100 kHz: 110 dB or greater	50/60 Hz: 100 dB or greater 100 kHz: 80 dB typical	50/60 Hz: 80 dB or greater
	Temperature coefficient	0.01%/°C	0.01	%/°C	0.01%/°C
	Voltage input method	Photoisolated input, resistor voltage division	Photoisolated input, resistor voltage division		
	Current input method	Isolated input from current sensor	Isolated input fro	m current sensor	Isolated input from current sensor
	External current sensor input	Yes (ME15W, BNC)	Yes (ME15W)	Yes (ME15W, BNC)	Yes (ME15W)
	Power supplied to external current sensor	Yes	Ye	es	Yes
	Data update rate	10 ms, 50 ms, 200 ms	1 ms, 10 ms, 5	50 ms, 200 ms	50 ms
Voltage input	Maximum input voltage	1000 V,±2000 V peak (10 ms)	1000 V,±2000 V peak	1000 V AC, 1500 V DC, ±2000 V peak	1500 V, ±2000 V peak
Volt inp	Maximum rated line-to-ground voltage	600 V CAT III 1000 V CAT II	600 V CAT III 1000 V CAT II	600 V AC/1000 V DC CAT III 1000 V AC/1500 V DC CAT II	600 V CAT III 1000 V CAT II
alysis	Number of motor analysis channels	Maximum 2 motors*1	Maximum	4 motors*1	Maximum 1 motors*1
Anal	Motor analysis input format	Analog DC, frequency, pulse	Analog DC, fre	equency, pulse	Analog DC, frequency, pulse
	Current sensor phase shift calculation	Yes	Yes (auto)	Yes
	Harmonics measurement	Yes (6, for each channel)	Yes (8, for each second s	ach channel)	Yes
	Maximum harmonics analysis order	100th	50	Oth	100th
	Harmonics synchronization frequency range	0.1 Hz to 300 kHz	0.1 Hz to 1.5 MHz	0.1 Hz to 1 MHz	0.5 Hz to 5 kHz
_	IEC harmonics measurement	Yes	Ye	S*2	-
Function	IEC flicker measurement	-	Ye	S*2	-
Fun	FFT spectrum analysis	Yes (DC to 2 MHz)	Yes*2 (DC ~ 4 MHz)	Yes*2 (DC ~ 1 MHz)	Yes (DC to 200 kHz)
	FFT analysis items	U, I, torque (analog), RPM (analog)		log), RPM (analog)	U, I, torque (analog), RPM (analog)
	User-defined calculations	Yes		es	-
	Delta conversion	Yes (Δ-Y, Y-Δ) Yes*1 20 ch	Yes (Δ·	-Υ, Υ-Δ)	Yes (Δ-Y) Yes*1 16 ch
	D/A output	(waveform output, analog output)	Yes*1 20 ch (waveform	output, analog output)	(waveform output, analog output)
Display	Display	9" WVGA TFT color LCD	10.1" WVGA 1	FFT color LCD	9" WVGA TFT color LCD
Dis	Touch screen	Yes		es	-
	External storage media	USB 2.0	USE	3 3.0	USB 2.0, CF card
	LAN (100BASE-TX, 1000BASE-T)	Yes		es	Yes (10BASE-T and 100BASE-TX only)
e	GP-IB	Yes	Ye	es	-
Interface	RS-232C	Yes (maximum 230,400 bps)	Yes (maximun	n 115,200 bps)	Yes (maximum 38,400 bps)
lht	External control	Yes	Ye	es	Yes
	Synchronization of multiple instruments	-	Yes*2 (up to 4	,	Yes (up to 8 instruments)
	Optical link	Yes	Yes	*1*2	-
	CAN or CAN FD	-	Ye	S*1	-
Din	nensions, weight (W×H×D)	430 mm (16.93 in.) × 177 mm (6.97 in.) × 450 mm (17.72 in.) 14 kg (493.84 oz.)	430 mm (16.93 in.) × 221 mm 14 kg (49	(8.70 in.) × 361 mm (14.21 in.) 33.84 oz.)	340 mm (13.39 in.) × 170 mm (6.69 in.) × 156 mm (6.14 in.) 4.6 kg (162.26 oz.)

*1: Sold separately *2: This is a feature that will be supported in the upcoming firmware update to Ver. 2.0.

Specifications

Power measurement

Measurement lines), 1-phase/3-w 2M, 3V3A, 3P3		e/4-wire (3P4W	/)					
	CH1	CH2	CH3	CH4	CH5	CH6					
Pattern 1	1P2W	1P2W	1P2W	1P2W	1P2W	1P2W					
Pattern 2	1P3W / 3	3P3W2M	1P2W	1P2W	1P2W	1P2W					
Pattern 3	1P3W / 3	3P3W2M	1P2W	1P3W /	3P3W2M	1P2W					
Pattern 4	1P3W/3	1P3W / 3P3W2M 1P3W / 3P3W2M 1P3W / 3P3									
Pattern 5	3P3V	V3M / 3V3A /	3P4W	1P2W	1P2W	1P2W					
Pattern 6	3P3V	V3M / 3V3A /	3P4W	1P3W /	3P3W2M	1P2W					
Pattern 7	3P3V	V3M / 3V3A /	3P4W	3P3	W3M / 3V3A / 3	P4W					
				P3W or 3P3W P3W3M, 3V3A							
Number of		For 3-channel combinations, select 3P3W3M, 3V3A, or 3P4W. 1 2 3 4 5 6									
channels Pattern 1											
Pattern 2	1	<i>,</i>		1		\ \					
Pattern 3		-	-	~	-						
Pattern 3 Pattern 4	-	-	-	-	-	1					
Pattern 5	-	-	-	1	-	\ \					
Pattern 6	-	-	~	~	<i>✓</i>	<i>·</i>					
Pattern 7	-	-	-	-	~	<i>s</i>					
Tatom			 at can be sele -] Cannot be se		the number of o						
Number of input channels	Max. 6 c and curre		h input unit pr	ovides 1 chan	nel for simultar	neous volta					
nput terminal profile		Dedicat	terminals (safe ed connector (ME15W)							
	Probe 2			upply terminal		A form					
Probe 2 power supp	channels				a max. of 700 n						
nput method		neasurement			rent sensor (vo						
/oltage range	6 V / 15 V	/ 30 V / 60 V	/ 150 V / 300 \	//600 V/1500) V						
			A / 4 A / 8 A / 20	A	(with 20 A sense	sor)					
			/ 80 A / 200 A		(with 200 A see						
Current range			A/ 800 A/ 2 kA		(with 2000 A s						
Probe 1)		/5A/10A/		0.4	(with 50 A sens						
		10 A / 20 A / 50 A / 100 A / 200 A / 500 A (with 500 A sensor) 20 A / 40 A / 100 A / 200 A / 400 A / 1 kA (with 1000 A sensor)									
						,					
	1 kA / 2 k	kA / 5 kA / 10	kA / 20 kA / 50	kA (with 0.1 n	nV/A sensor)						
	100 A / 2	100 A / 200 A / 500 A / 1 kA / 2 kA / 5 kA (with 1 mV/A sensor)									
Probe 2)	10 A / 20	10 A / 20 A / 50 A / 100 A / 200 A / 500 A (with 10 mV/A sensor; with 3274 or 3275)									
		1 A / 2 A / 5 A / 10 A / 20 A / 50 A (with 100 mV/A sensor; with 3273 or 3276)									
	100 mA /	100 mA / 200 mA / 500 mA / 1 A / 2 A / 5 A $$ (with 1 V/A sensor; with CT6700 or CT6701)									
	(0.1 V / 0.	2 V / 0.5 V / 1	.0 V / 2.0 V / 5	.0 V range)							
Power range	2.40000	W to 9.00000	MW (dependir	ng on voltage a	ind current com	binations)					
			urrent range ra								
Crest factor				or 5 V Probe 2 e and current i							
				or 5 V Probe 2							
nput resistance	Voltage i		4 MΩ ±40 kΩ								
50 Hz / 60 Hz)	Probe 1	inputs	1 MΩ ±50 kΩ	Probe 2 in	puts 1 M	Ω ±50 kΩ					
	Voltage i			Vpeak (10 ms							
					Iz to 1 MHz, (125						
Maximum input volt	age		Jnit for f above		1Hz to 5 MHz, 5	0 0					
	Probe 1	inputs 5	i V, ±12 Vpeak	(10 ms or less))						
	Probe 2	inputs 8	8 V, ±15 Vpeak	(10 ms or less))						
Aavimum totad			(50 Hz/60 Hz)								
Maximum rated volta o earth	CATIII 60	0V; anticipate	d transient ov	ervoltage: 600 ervoltage: 600							
						ovnebra -:					
Measurement meth	od calculatio		aneous aigita	a samping W	ith zero-cross	syncinoniz					
Sampling	5 MHz / 1	8 bits									
		Iz to 2 MHz									
Frequency band	DO, 0.1 H										
Synchronization requency range	0.1 Hz to	2 MHz									
,, iungo	111 to 110		fixed at data	adate rate)							
Synchronization sou	Irce Ext1 to E The zero	xt2, Zph, CH -cross point c		n after passing	through the ze	ero-cross fil					
Data update rate	10 ms / 5 When us	0 ms / 200 ms	eraging, the da		varies based o	on the numb					
_PF	500 Hz / Approx. 5 Except w	1 kHz / 5 kHz 00 kHz analog hen off, add ±	/ 10 kHz / 50 k LPF + digital II 0.1% rdg. to th	R filter (Butterw e accuracy.	500 kHz / OFF orth characterist o 1/10 of the set						
Polarity detection											
voltage	Current Z	อาจ-อาจธร แ m	ing compariso								
Measurement parameters	(Q), powe voltage ri	er factor (λ), μ pple factor (U	phase angle (o Irf), current ripp	þ), frequency (nt power (S), re f), efficiency (η current integrati Ipk)), loss (Los					
Effective measurem	ent		r: 1% to 110%								
Zero-suppression ange			5 f.s. / 0.5% f.s.		nen receiving ze	ero input					
Zero-adjustment	Zero-adj		put offsets th		an ±10% f.s. fo						

Accuracy	c	of 0 V, after	zero-adjust		input, terminal-to-ground voltage
				Voltage (U)	Current (I)
DC				% rdg. ±0.03% f.s.	±0.02% rdg. ±0.03% f.s.
0.1 Hz ≤ f ·				% rdg. ±0.2% f.s.	±0.1% rdg. ±0.2% f.s.
30 Hz ≤ f <				% rdg. ±0.05% f.s. % rdg. ±0.02% f.s.	±0.03% rdg. ±0.05% f.s. ±0.02% rdg. ±0.02% f.s.
45 Hz ≤ f :				% rdg. ±0.02% f.s.	±0.02% rdg. ±0.02% r.s. ±0.03% rdg. ±0.04% f.s.
$66 Hz < f \le 1 kHz$ $1 kHz < f \le 50 kHz$ $50 kHz < f \le 100 kHz$ $100 kHz < f \le 500 kHz$				% rdg. ±0.04% f.s.	±0.03% rdg. ±0.04% r.s. ±0.1% rdg. ±0.05% f.s.
				<u> </u>	
				f% rdg. ±0.2% f.s.	±0.01×f% rdg. ±0.2% f.s.
				xf% rdg. ±0.5% f.s.	±0.008×f% rdg. ±0.5% f.s.
	500 kHz < f ≤ 1 MHz Frequency band			×f-7)% rdg. ±1% f.s.	±(0.021×f-7)% rdg. ±1% f.s.
Frequenc	ia	2 1015	lz (-3 dB, typical)	2 MHz (-3 dB, typical)	
			Ac	tive power (P)	Phase difference
DC	;		±0.02	% rdg. ±0.05% f.s.	_
0.1 Hz ≤ f -	< 30	Hz	±0.19	% rdg. ±0.2% f.s.	±0.1°
30 Hz ≤ f <	< 45 ł	Ηz	±0.03	% rdg. ±0.05% f.s.	±0.05°
45 Hz ≤ f :	≤ 66 ŀ	-Iz	±0.029	% rdg. ±0.03% f.s.	±0.05°
66 Hz < f :	≤1 kł	Ηz	±0.049	% rdg. ±0.05% f.s.	±0.05°
1 kHz < f ≤	: 10 k	Hz		% rdg. ±0.1% f.s.	±0.4°
10 kHz < f :	≤ 50 k	Hz		% rdg. ±0.1% f.s.	±(0.040×f)°
50 kHz < f ≤	: 100	kHz	±0.012	×f% rdg. ±0.2% f.s.	±(0.050×f)°
100 kHz < f :	≤ 500	kHz	±0.009	×f% rdg. ±0.5% f.s.	±(0.055×f)°
500 kHz < f	≤ 1 N	/Hz	±(0.047×	(f-19)% rdg. ±2% f.s.	±(0.055×f)°
	-	than \bar{DC} are When U or source inp The phase Add the cuit power, and For the 6 V Add ±20 μ V (however, :) Add ±20 μ V (however, :) Add ±20 μ V (however, :) The accura Add ±0.059 add ±0.2° the accura Hz to 10 Hz The accura 220 V from The accura 750 V for v'The accura 750 V for v'The accura 750 V for v'The accura for inp until the in For voltage difference - 500 Hz <15 Hz <15 : 20 H	a defined for a defined for its selected ut of at least difference is rent sensor phase difference is range, add t to the DC 2 V f.s.). 6 rdg. $\pm 0.2\%$ b the phase 2 V f.s.). 6 rdg. $\pm 0.2\%$ b the phase 2 V f.s.). 6 rdg. $\pm 10.2\%$ b the phase 20 r figures for 10 Hz to 16 cy figures for 10	Urms and Irms. as the synchronization s 5% f.s. defined for a power fact accuracy to the above a rence. b.05% f.s. for voltage au accuracy for current and activ at or above 10 kHz. r voltage, current, active ce values. r voltage, active power, a Hz are reference values. r voltage, active power, a that a reference values. r voltage, active power, a that active power at that are less than 1000 V ce temperature falls. of 600 V, add the followir .3° .5°	active power when using Probe 1 re power when using Probe 2, and power, and phase difference for 0. and phase difference in excess of that phase difference in excess of that are reference values. and phase difference in excess of tz <f <math="">\le 1 MHz are reference values to rabove 1000 V (however, figures I/, the effect will persist</f>
		parameter			
		Apparent	power	Voltage accuracy + cu	rrent accuracy ±10 dgt.
		Reactive p	ower	Apparent power accur	
					$(1-\lambda^2 - \sqrt{1-\lambda^2}) \times 100\%$ f.s.
		Power fac	tor	φ of other than ±90°:	
				+ cos (φ + phase diffe	erence accuracy) × 100%rdg. ± 50dg
				$\frac{\pm 1 - \cos(\phi)}{\cos(\phi)}$	J× 100 %10g. ± 500g
				φ of ±90°:	-
					nce accuracy) × 100% f.s. ±50 dgt.
		Waveform	peak		
				Voltage/current RMS a	iccuracy ±1% f.s.
				Voltage/current RMS a (f.s.: apply 300% of ra	
				(f.s.: apply 300% of ra	nge)
			Display valu	(f.s.: apply 300% of ra	nge)
		f: kHz; φ: λ: Display v	Display valu value for pov	(f.s.: apply 300% of ra ue for voltage/current ph wer factor	nge) lase difference;
	, r	f: kHz; φ: λ: Display v Add the foll ange of 0°C	Display valu value for por owing to th C to 20°C or	(f.s.: apply 300% of ra ue for voltage/current ph wer factor e voltage, current, and 26°C to 40°C:	nge) ase difference; active power accuracy within th
	A r t	f:kHz; φ: λ:Display v Add the foll- ange of 0°C =0.01% rdg.	Display valu value for po- owing to th C to 20°C or /°C (add 0.0	(f.s.: apply 300% of ra ue for voltage/current ph wer factor e voltage, current, and 26°C to 40°C: 01% f.s./°C for DC meas	nge) ase difference; active power accuracy within th sured values)
	re F	f: kHz; φ: λ: Display v Add the foll ange of 0°C c0.01% rdg. For current	Display valu value for por owing to th C to 20°C or /°C (add 0.0 and active	(f.s.: apply 300% of ra ue for voltage/current ph wer factor e voltage, current, and 26°C to 40°C: 01% f.s./°C for DC meas power when using Pro	nge) ase difference; active power accuracy within th sured values)
	re F	f: kHz; φ: λ: Display v Add the follo ange of 0°C 0.01% rdg. For current .s./°C for D	Display valu value for por owing to the C to 20°C or /°C (add 0.0 and active C measured	(f.s.: apply 300% of ra ue for voltage/current ph wer factor e voltage, current, and 26°C to 40°C: 01% f.s./°C for DC meas power when using Pro d values)	nge) ase difference; active power accuracy within th sured values)
	re F	f: kHz; φ: λ: Display v Add the foll- ange of 0°C 0.01% rdg. For current s./°C for D Jnder condi	Display valu value for por owing to th C to 20°C or /°C (add 0.0 and active C measured titions of 60°	(f.s.: apply 300% of ra ue for voltage/current ph wer factor e voltage, current, and 26°C to 40°C: 11% f.s./°C for DC meas power when using Pro d values) & RH or greater:	nge) aase difference; active power accuracy within th urred values) be 2, ±0.02% rdg./°C (add 0.05%
	re F	f: kHz; φ: λ: Display v Add the foll ange of 0°C c0.01% rdg. 50 current s./°C for D Jnder condi Add ±0.0006	Display valu value for por owing to th C to 20°C or o'C (add 0.0 and active C measured titons of 60° × humidity [°	(f.s.: apply 300% of ra ue for voltage/current ph wer factor e voltage, current, and 26°C to 40°C: 11% f.s./°C for DC meas power when using Pro d values) & RH or greater:	nge) aase difference; active power accuracy within th sured values) be 2, ±0.02% rdg./°C (add 0.05% e voltage and active power accuracy
	re F f //	f: kHz; φ: λ: Display v Add the foll ange of 0°C c0.01% rdg. For current s./°C for D: Jnder condi Add ±0.0006 Add ±0.0006	Display valu value for por owing to th C to 20°C or /°C (add 0.0 and active C measured titions of 60° × humidity [° 6 × humidity]	(f.s.: apply 300% of rate ue for voltage/current phwer factor e voltage, current, and 26°C to 40°C: 11% f.s./°C for DC meas power when using Prod values) % RH or greater: %RH) × f [kH2]% rdg. to th (%RH) × f [kH2]° for th	nge) aase difference; active power accuracy within th sured values) be 2, ±0.02% rdg./°C (add 0.05% e voltage and active power accuracy e phase difference.
and humidity	re F f //	f: kHz; φ: λ: Display v Add the foll ange of 0°C c0.01% rdg. For current s./°C for D: Jnder condi Add ±0.0006 Add ±0.0006	Display valu value for por owing to th to 20°C or /°C (add 0.0. and active C measured titions of 60° × humidity [° 6 × humidity] c: 100 dB c	(f.s.: apply 300% of rate te for voltage/current phwer factor evoltage, current, and 26°C to 40°C: 10% f.s./°C for DC meas power when using Pro yalues) % RH or greater: %RH y t [kH2]% rdg. to th (%RH) x [(kH2)% rdg. to th (%RH) x [(kH2)% rdg. to th	nge) aase difference; active power accuracy within th sured values) be 2, ±0.02% rdg./°C (add 0.05% e voltage and active power accuracy e phase difference. between the voltage
and humidity	re F f J F f f S	f: kHz; φ: λ: Display v Add the foll ange of 0°C c0.01% rdg. For current s./°C for D: Jnder condi Add ±0.0006 Add ±0.0006	Display valu value for por owing to th C to 20°C or /°C (add 0.0. C measured titons of 60° × humidity [° 6 × humidity [° 5 × humidity] c : 100 dB c inputtern	(f.s.: apply 300% of rate ue for voltage/current phwer factor e woltage, current, and 26°C to 40°C: D1% f.s./°C for DC meas power when using Pro y RH or greater: %RH) x f [kH2]% fog, to th r [%RH] x f [kH2]% for th r greater (when applied inhals and the enclosure	nge) aase difference; active power accuracy within th sured values) be 2, ±0.02% rdg./°C (add 0.05% e voltage and active power accuracy e phase difference. between the voltage e)
and humidity	re F f J J F f J J J J	[f: kHz; φ: λ: Display v Add the foll ange of 0°C 0.01% rdg. or current s./°C for D: Jnder condi Add ±0.0006 Add ±0.0006 io Hz/60 Hz 00 kHz :	Display valu value for por owing to th C to 20°C or o'C (add 0.0 and active C measured titons of 60° s humidity c : 100 dB co inputtern 80 dB or	(f.s.: apply 300% of rate te for voltage/current phwer factor evoltage, current, and 26°C to 40°C: 10% f.s./°C for DC meas power when using Pro yalues) % RH or greater: %RH y t [kH2]% rdg. to th (%RH) x [(kH2)% rdg. to th (%RH) x [(kH2)% rdg. to th	nge) aase difference; active power accuracy within th sured values) be 2, ±0.02% rdg./°C (add 0.05° e voltage and active power accuracy e phase difference. between the voltage e)
Ind humidity	re ff f l l f f f f l l l l l l l l l l l	[f: kHz; φ: λ: Display v Add the foll ange of 0°C 0.01% rdg. or current s./°C for D: Jnder condi Add ±0.0006 Add ±0.0006 io Hz/60 Hz 00 kHz :	Display valu value for poor bowing to the to 20°C or /°C (add 0.0 and active C measured titons of 60° × humidity [° 6 × humidity [° 6 × humidity [° 100 dB or mouttern 0 dB or CMRR when	(f.s.: apply 300% of ra le for voltage/current ph wer factor e voltage, current, and 26°C to 40°C: 11% f.s./°C for DC meas power when using Pro J values) % RH or greater: %RH y t [kH2]% rdg. to th / [%RH] × f [kH2]° for th r greater (when applied ninals and the enclosure greater (reference valu	nge) aase difference; active power accuracy within th sured values) be 2, ±0.02% rdg./°C (add 0.05° e voltage and active power accuracy e phase difference. between the voltage e)
Ind humidity	re Ff ff l f f f r	L f: kHz; φ : λ : Display N Add the foll- ange of 0°C 0.01% rdg. \overline{c} or current s. /°C for D Jnder condi dd ± 0.0006 Add ± 0.0006 G Hz/60 Hz 00 kHz : Defined for (neasureme	Display valu value for por owing to th to 20°C or /°C (add 0.0 and active C measured titions of 60° × humidity (6 × humidity c: 100 dB c inputtern 80 dB or CMRR when nt ranges.	(f.s.: apply 300% of ra le for voltage/current ph wer factor e voltage, current, and 26°C to 40°C: 10% f.s./°C for DC meas power when using Pro d values) % RH or greater: %RH] x1 [kHz]% rdg. to th (%RH] x1 [kHz]% rdg. to th r greater (when applied ninals and the enclosure greater (reference value n the maximum input voltage)	nge) aase difference; active power accuracy within th sured values) be 2, ±0.02% rdg./°C (add 0.05% e voltage and active power accuracy e phase difference. between the voltage e) e) litage is applied for all
and humidity Effects of common- node voltage Effects of external	re Ff ff l f f f r	L f: kHz; φ : λ : Display N Add the foll- ange of 0°C 0.01% rdg. \overline{c} or current s. /°C for D Jnder condi dd ± 0.0006 Add ± 0.0006 G Hz/60 Hz 00 kHz : Defined for (neasureme	Display valu value for por owing to th to 20°C or /°C (add 0.0 and active C measured titions of 60° × humidity (6 × humidity c: 100 dB c inputtern 80 dB or CMRR when nt ranges.	(f.s.: apply 300% of ra le for voltage/current ph wer factor e voltage, current, and 26°C to 40°C: 11% f.s./°C for DC meas power when using Pro J values) % RH or greater: %RH y t [kH2]% rdg. to th / [%RH] × f [kH2]° for th r greater (when applied ninals and the enclosure greater (reference valu	nge) aase difference; active power accuracy within th sured values) be 2, ±0.02% rdg./°C (add 0.05% e voltage and active power accuracy e phase difference. between the voltage e) e) litage is applied for all
Effects of common- mode voltage	re Ff ff l f f f r	L f: kHz; φ : λ : Display N Add the foll- ange of 0°C 0.01% rdg. \overline{c} or current s. /°C for D Jnder condi dd ± 0.0006 Add ± 0.0006 G Hz/60 Hz 00 kHz : Defined for (neasureme	Display valu value for por owing to th to 20°C or /°C (add 0.0 and active C measured titions of 60° × humidity (6 × humidity c: 100 dB c inputtern 80 dB or CMRR when nt ranges.	(f.s.: apply 300% of ra te for voltage/current ph wer factor e voltage, current, and 26°C to 40°C: 10% fs./°C for DC mease power when using Pro- y alues) % RH or greater: %RH] × f [kH2]% rdg, to th / (%RH) × f [kH2]% for th r greater (when applied ninals and the enclosure greater (reference valu n the maximum input vo	nge) aase difference; active power accuracy within th sured values) be 2, ±0.02% rdg./°C (add 0.05% e voltage and active power accuracy e phase difference. between the voltage e) e) ltage is applied for all DC or 50 Hz/ 60 Hz)
and humidity Effects of common- mode voltage Effects of external magnetic fields	re ff ff A A A A A A A A A A A A A A A A A	L f: kHz; φ : λ : Display N Add the foll- ange of 0°C 0.01% rdg. \overline{c} or current s. /°C for D Jnder condi dd ± 0.0006 Add ± 0.0006 G Hz/60 Hz 00 kHz : Defined for (neasureme	Display valuation of the second secon	(f.s.: apply 300% of ra te for voltage/current ph wer factor e voltage, current, and 26°C to 40°C: 10% fs./°C for DC mease power when using Pro- y alues) % RH or greater: %RH] × f [kH2]% rdg, to th / (%RH) × f [kH2]% for th r greater (when applied ninals and the enclosure greater (reference valu n the maximum input vo	nge) aase difference; active power accuracy within th sured values) be 2, ±0.02% rdg./°C (add 0.05% e voltage and active power accuracy e phase difference. between the voltage e) e) ltage is applied for all DC or 50 Hz/ 60 Hz)
Effects of temperatu and humidity Effects of common- mode voltage Effects of external magnetic fields	re f f L L L L L L L L L L L L L L L L L L	L f:kHz; ϕ : λ :Display. Vadd the foll ange of 0°C0.01% rdg. $00.01%$ rdg. 00.01% rdg. 0.01% rdg. 0.	Display valuation of the second secon	$ \begin{array}{l} (f.s.: apply 300\% of rate of the second sec$	nge) aase difference; active power accuracy within th sured values) be 2, ±0.02% rdg./°C (add 0.05% e voltage and active power accuracy e phase difference. between the voltage e) e) ltage is applied for all DC or 50 Hz/ 60 Hz)

Frequency measurement

Number of measurement channels	Max. 6 channels (f1 to f6), based on the number of input channels				
Measurement source	Select from U/I for each connection.				
Measurement method	Reciprocal method + zero-cross sampling value correction Calculated from the zero-cross point of waveforms after application of the zero- cross filter.				
Measurement range	0.1 Hz to 2 MHz (Display shows 0.00000 Hz or Hz if measurement is not possible.)				
Accuracy	 ±0.01Hz (Only when measuring 45-66 Hz with a minimum measurement interval of 50 ms and sine input of at least 50% relative to the voltage range when measuring the voltage frequency.) ±0.05% rdg ± 1 dgt. (other than the conditions mentioned above, when the sine wave is at least 30% relative to the measurement source's measurement range) 				
Display format	0.10000 Hz to 9.99999 Hz, 9.9000 Hz to 99.9999 Hz, 99.000 Hz to 999.999 Hz, 0.99000 KHz to 9.99999 KHz, 9.9000 KHz to 99.9998 KHz, 99.000 kHz to 999.999 kHz, 0.99000 MHz to 2.00000 MHz				

Integration measurement

Measurement modes	Select RMS or DC for each connection (DC mode can only be selected when using an AC/DC sensor with a 1P2W connection).				
Measurement parameters	Current integration (Ih+, Ih-, Ih), active power integration (WP+, WP-, WP) Ih+ and Ih- are measured only in DC mode. Only Ih is measured in RMS mode.				
	Digital calculation based on current and active power values				
Measurement method	DC mode Every sampling interval, current values and instantaneous power values are integrated separately for each polarity.				
Measurement method	RMS mode The current RMS value and active power value are integrated for each measurement interval. Only active power is integrated separately for each polarity.				
Display resolution	999999 (6 digits + decimal point), starting from the resolution at which 1% o each range is f.s.				
Measurement range	0 to ±9999.99 TAh/TWh				
Integration time	10 sec. to 9999 hr. 59 min. 59 sec.				
Integration time accuracy	±0.02% rdg. (0°C to 40°C)				
Integration accuracy	±(current or active power accuracy) ±integration time accuracy				
Backup function	None				

Harmonics measurement

Max. 6 channels, based on the number of built-in channels
Based on the synchronization source setting for each connection.
Select from IEC standard mode or wideband mode (setting applies to all channels).
Harmonic voltage RMS value, harmonic voltage content ratio, harmonic voltage phase angle, harmonic current RMS value, harmonic current content ratio, harmonic current phase angle, harmonic active power, harmonic power content ratio, harmonic voltage/current phase difference, total voltage harmonic distortion, total current harmonic distortion, voltage unbalance ratio, current unbalance ratio
32 bits
Digital filter (automatically configured based on synchronization frequency)
Rectangular
OFF / Type 1 (harmonic sub-group) / Type 2 (harmonic group)
THD_F / THD_R (Setting applies to all connections.) Select calculation order from 2nd order to 100th order (however, limited to the maximum analysis order for each mode).

(1) IEC standard mode

Measurement method IEC 61000-4-7:2002 compliant with gap overlap						
Synchroniz frequency r		45 Hz to 66 Hz				
Data update	e rate	Fixed at 2	200 ms.			
Analysis or	ders	0th to 50	th			
Window wa	ve number	When les	s than 56 Hz, 10 waves; whe	n 56 Hz or greater, 12 wa	ives	
Number of	FFT points	4096 poi	nts			
	Freque	ency	Harmonic voltage and current	Harmonic power	Phase difference	
	DC (0th	order)	±0.1% rdg. ±0.1% f.s.	±0.1% rdg. ±0.2% f.s.		
	45 Hz ≤ f	≤ 66 Hz	±0.2% rdg. ±0.04% f.s.	±0.4% rdg. ±0.05% f.s.	±0.08°	
Accuracy	66 Hz < f s	≤440 Hz	±0.5% rdg. ±0.05% f.s.	±1.0% rdg. ±0.05% f.s.	±0.08°	
	440 Hz < f	≤1 kHz	±0.8% rdg. ±0.05% f.s.	±1.5% rdg. ±0.05% f.s.	±0.4°	
	1 kHz < f ≤	2.5 kHz	±2.4% rdg. ±0.05% f.s.	±4% rdg. ±0.05% f.s.	±0.4°	
	2.5 kHz < f	≤ 3.3 kHz	3.3 kHz ±6% rdg. ±0.05% f.s. ±10% rdg. ±0.05% f.s.			
2.5 kHz < 1 ≤ 3.3 kHz						

(2) Wideband mode

(2) VVIC	eband mod	de							
Measure	ment method		Zero-cross synchronization calculation method (same window for each synchronization source) with gaps						
modouroi	inonit inotified		Fixed sampling interpolation calculation method						
Synchron				300 kHz					
frequency									
Data upd	ate rate	FI	xed at	50 ms.					
				Frequency	Windo	w wave number	Maxii	num analysis order	
				1 Hz ≤ f < 80 Hz		1		100th	
				Hz ≤ f < 160 Hz		2		100th	
		-) Hz ≤ f < 320 Hz		2		60th	
Maximum	analysis	∣⊦) Hz ≤ f < 640 Hz 0 Hz < f < 6 kHz				60th	
order and						4		50th	
Window v	vave number	۱ŀ		kHz ≤ f < 12 kHz kHz ≤ f < 25 kHz		2 4		50th	
				$kHz \le f < 50 kHz$		8		50th 30th	
		۱ŀ		$Hz \le f < 101 \text{ kHz}$		16		15th	
		-		$kHz \le f < 201 kHz$		32		7th	
		۱ŀ		$kHz \le f \le 300 kHz$	64		7th 5th		
Accuracy				following to the acc phase difference. (I				ent (I), active power	
	Frequen			Harmonic voltage an		Harmonic pow		Phase difference	
	DC			±0.1% f.s.		±0.2% f.s.		-	
	0.1 Hz ≤ f <	30	Hz	±0.05% f.s.		±0.05% f.s.		±0.1°	
	30 Hz ≤ f <	45	Hz	±0.1% f.s.		±0.2% f.s.		±0.1°	
	45 Hz ≤ f ≤			±0.05% f.s.		±0.1% f.s.		±0.1°	
	66 Hz < f ≤	1 k	1 kHz ±0.05% f.s.			±0.1% f.s.		±0.1°	
	1 kHz < f ≤ 1			±0.05% f.s.		±0.1% f.s.		±0.6°	
	10 kHz < f ≤			±0.2% f.s.	±0.4% f.s.			±(0.020×f)° ±0.5°	
	50 kHz < f ≤ 1			±0.4% f.s.		±0.5% f.s.		±(0.020×f)° ±1°	
	100 kHz < f ≤			±1% f.s.		±2% f.s.		±(0.030×f)° ±1.5°	
	500 kHz < f ≤			±4% f.s.		±5% f.s.		±(0.030×f)° ±2°	
				f in accuracy calcul					
				of 300 kHz are refer			nereno	se for frequencies if	
				he fundamental wav			6 Hz to	850 Hz the figure	
				age, current, power,					
		fu	undam	ental wave are refer	ence val	ues.			
				he fundamental way					
	for voltage, current, power, and phase difference in excess of 6 kHz are								

reference values. Accuracy values for phase difference are defined for input for which the voltage and current for the same order are at least 10% f.s.

Waveform recording

	3					
Number of	Voltage and current waveforms Max. 6 channels (based on the number of installed channels)					
measurement channels	Motor waveforms * Max. 2 analog DC channels + max. 4 pulse channels					
Recording capacity	1 Mword × ((voltage + current) × max. 6 channels + motor waveforms) Fixed to 1 Mword when the number of channels is low. Motor waveforms: Motor analysis and D/A-equipped models only No memory allocation function					
Waveform resolution	16 bits (Voltage and current waveforms use the upper 16 bits of the 18-bit A/D.)					
Sampling speed	Voltage and current waveforms Always 5 MS/s Motor waveforms * Always 5 0 kS/s (analog DC) Motor pulse * Always 5 MS/s					
Compression ratio	1/1, 1/2, 1/5, 1/10, 1/20, 1/50, 1/100, 1/200, 1/500 (5 MS/s, 2.5 MS/s, 1 MS/s, 500 kS/s, 250 kS/s, 100 kS/s, 50 kS/s, 25 kS/s, 10 kS/s) However, motor waveforms* are only compressed at 50 kS/s or less.					
Recording length	1 kWord / 5 kWord / 10 kWord / 50 kWord / 100 kWord / 500 kWord / 1 Mword					
Storage mode	Peak-to-peak compression or simple thinning					
Trigger mode	SINGLE or NORMAL (with forcible trigger setting) When FFT analysis is enabled in NORMAL mode, the instrument enters trigger standby and waits for FFT calculations to complete.					
Pre-trigger	0% to 100% of the recording length, in 10% steps					
Trigger source	Voltage and current waveform, waveform after voltage and current zero-cross filter, manual, motor waveform*, motor pulse*					
Trigger slope	Rising edge, falling edge					
Trigger level	±300% of the range for the waveform, in 0.1% steps					
Trigger detection method	Trigger source: Voltage and current waveform, waveform after voltage and current zero-cross filter, manual, motor waveform, moto DIA-equipped models only) Trigger slope: Rising edge, falling edge Trigger level: ±300% of the range for the waveform, in 0.1% steps (2) Event trigger Detects the trigger based on fluctuations in the value of the measuremen parameter selected for DIA output. Specifically, trigger detection conditions are set using OR and ANE operations performed on the four events defined below. Note that the ANL operator has precedence over the OR operator. Event: These condition definitions consist of a D/A output measurement parameter (D/A13 to D/A20), an inequality sign (< or >), and a value (0.0000 to 999999T). EVm : D/An □ X.XXXXX (b-digi constant, y: SI prefix)					
	*Motor waveform and motor pulse: Motor Analysis and D/A-equipped models only					
FFT analysi	S					
Measurement channel	Voltage-Current Waveform - 1 channel (selected from input channels) Motor Waveform - Analog DC Analysis performed only when FFT screen is displayed					
Calculation type	RMS spectrum					
Number of FFT points	1,000, 5,000, 10,000 or 50,000 points					
FFT processing word length	32 bits					
Analysis position	Any desired position among the waveform record data					
Antialiasing	Automatic Digital Filter (during simple thinning mode) None (During Peak-Peak compression mode, use the Max value and perform FFT)					
Window function	Rectangular/Hanning/Flat-top					
	Linked with compression ratio of waveform records					

 None (During Peak-Peak compression mode, use the Max value and perform FFT)

 Window function
 Rectangular/Hannig/Flat-Loop

 Max. analysis frequency
 Linked with compression ratio of waveform records. 2 MHz, 1 MHz, 400 kHz, 200 kHz, 100 kHz, 00 kHz, 00 kHz, 10 kHz or 4 kHz / 20 kHz, 10 kHz, or 4kHz during analog DC input (Mentioned above frequency - frequency resolution) becomes the maximum analysis frequency

 FFT peak value display
 Compute 10 frequencies and voltage-current peak value levels (local maximum value) each starting from the top, ordered by level / For FFT calculation results, recognize as the peak value when the data on both sides is lower than the original data

Motor Analysis (PW6001-11 to -16 only)

,						
Number of input channels	4 channels: CH A Analog DC input / Frequency input / Pulse input CH B Analog DC input / Frequency input / Pulse input CH C Pulse input CH D Pulse input					
Operating mode	Single, dual, or independent input					
Input terminal profile	Isolated BNC connectors					
Input resistance (DC)	1 MΩ ±50 kΩ					
Input method	Function-isolated input and single-end input					
Measurement parameters	Voltage, torque, rpm, frequency, slip, motor power					
Maximum input voltage	±20 V (analog DC and pulse operation)					
Additional conditions for guaranteed accuracy	Input: Terminal-to-ground voltage of 0 V, after zero-adjustment					
(1) Analog DC inp	ut (CH A/CH B)					
Measurement range	±1 V / ±5 V / ±10 V					
Effective input range	1% to 110% f.s.					
Sampling	50 kHz, 16 bits					
Response speed	0.2 ms (when LPF is OFF)					
	Simultaneous digital sampling, zero-cross synchronization calculation method					
Measurement method	(averaging between zero-crosses)					
Measurement accuracy	±0.05% rdg. ±0.05% f.s.					
Temperature coefficient	±0.03% f.s./°C					
Effects of common-	±0.01% f.s. or less with 50 V applied between the input terminals and the enclosure					
mode voltage	(DC / 50 Hz / 60 Hz)					
LPF	OFF (20 kHz) / ON (1 kHz)					
Display range	From the range's zero-suppression range setting to ±150%					
Zero-adjustment	Voltage ±10% f.s., zero-correction of input offsets that are less					
(2) Frequency input	(CH A/CH B)					
Detection level	Low: 0.5 V or less; high: 2.0 V or more					
Measurement frequency band	0.1 Hz to 1 MHz (at 50% duty ratio)					
Minimum detection width	0.5 µs or more					
Measurement accuracy	±0.05% rdg. ±3 dgt.					
Display range	1.000 kHz to 500.000 kHz					
(3) Pulse input (CH	A / CH B / CH C / CH D)					
Detection level	Low: 0.5 V or less; high: 2.0 V or more					
	0.1 Hz to 1 MHz (at 50% duty ratio)					
Measurement frequency band	0.1 Hz to 1 MHz (at 50% duty ratio)					
	0.5 µs or more					
frequency band	$0.5\mu s$ or more OFF / Weak / Strong (When using the weak setting, positive and negative pulses of less than 0.5 μs are ignored. When using the strong setting, positive and					
frequency band Minimum detection width Pulse filter	0.5 µs or more OFF / Weak / Strong (When using the weak setting, positive and negative pulses of less than 0.5 µs are ignored. When using the strong setting, positive and negative pulses of 5 µs are ignored.)					
frequency band Minimum detection width	$0.5\mu s$ or more OFF / Weak / Strong (When using the weak setting, positive and negative pulses of less than 0.5 μs are ignored. When using the strong setting, positive and					
frequency band Minimum detection width Pulse filter Measurement accuracy	0.5 µs or more OFF / Weak / Strong (When using the weak setting, positive and negative pulses of less than 0.5 µs are ignored. When using the strong setting, positive and negative pulses of 5 µs are ignored.) ±0.05% rdg. ±3 dgt.					
frequency band Minimum detection width Pulse filter Measurement accuracy Display range Unit Frequency division	0.5 µs or more OFF / Weak / Strong (When using the weak setting, positive and negative pulse of less than 0.5 µs are ignored. When using the strong setting, positive and negative pulses of 5 µs are ignored.) ±0.05% rdg ±3 dgt. 0.1 Hz to 800.000 kHz					
frequency band Minimum detection width Pulse filter Measurement accuracy Display range Unit	0.5 µs or more OFF / Weak / Strong (When using the weak setting, positive and negative pulses of less than 0.5 µs are ignored. When using the strong setting, positive and negative pulses of 5 µs are ignored.) ±0.05% rdg. ±3 dgt. 0.1 Hz to 800.000 kHz Hz / r/min.					

D/A output (PW6001-11 to -16 only)

Number of output channels	20 channels				
Output terminal profile	D-sub 25-pin connector x 1				
	- Switchable between waveform output and analog output				
Output details	(select from basic measurement parameters).				
	- Waveform output	is fixed to CH1 to CH12.			
D/A conversion resolution	16 bits (polarity + 15 bits)				
Output refresh rate	Analog output Waveform output	10 ms / 50 ms / 200 ms (based on data update rate for the selected parameter) 1 MHz			
Output voltage	Analog output Waveform output	±5 V DC f.s. (max. approx. ±12 V DC) Switchable between ±2 V f.s. and ±1 V f.s., crest factor of 2.5 or greater. Setting applies to all channels.			
Output resistance	100 Ω ±5 Ω				
	Analog output	Output measurement parameter measurement accuracy ±0.2% f.s. (DC level)			
Output accuracy	Waveform output	Measurement accuracy ±0.5% f.s. (at ±2 V f.s.)			
		or ±1.0% f.s. (at ±1 V f.s.)			
		(RMS value level, up to 50 kHz)			
Temperature coefficient	±0.05% f.s./°C				

Display section

-1					
Display characters	English, Japanese, Chinese (simplified)				
Display	9" WVGA TFT color LCD (800 × 480 dots) with an LED backlight and analog resistive touch panel				
Display value resolution	999999 count (including integration values)				
Display refresh rate	Measured values Waveforms	Approx. 200 ms (independent of internal data update rate) When using simple averaging, the data update rate varies based on the number of averaging iterations. Based on display settings			

External interface

(1) USB flash drive interface				
Connector	USB Type A connector × 1			
Electrical specifications	USB 2.0 (high-speed)			
Power supplied	Max. 500 mA			
Supported USB flash drives	USB Mass Storage Class compatible			
Recorded data	- Save/load settings files - Save measured values/automatic recorded data (CSV format) - Copy measured values/recorded data (from internal memory) - Save waveform data, save screenshots (compressed BMP format)			

(2) LAN interface

(2) LAN IIIteriace					
Connector	RJ-45 connector x 1				
Electrical specifications	IEEE 802.3 compliant				
Transmission method	10Base-T / 100Base-TX / 1000Base-T (automatic detection)				
Protocol	TCP/IP (with DHCP function)				
	HTTP server (remote operations)				
Functions	Dedicated port (data transferring, command control) FTP server (file transferring)				
(3) GP-IB interfac	e				
Communication method	IEEE 488.1 1987 compliant developed with reference to IEEE 488.2 1987 Interface functions: SH1, AH1, T6, L4, SR1, RL1, PP0, DC1, DT1, C0				
Addresses	00 to 30				
Functions	Command control				
(4) RS-232C inter	face				
Connector	D-sub 9-pin connector × 1, 9-pin power supply compatible, also used for external control				
Communication	RS-232C, EIA RS-232D, CCITT V.24, and JIS X5101 compliant				
method	Full duplex, start stop synchronization, data length of 8, no parity, 1 stop bit				
Flow control	Hardware flow control ON/OFF				
Communications speed	9,600 bps / 19,200 bps / 38,400 bps / 57,600 bps / 115,200 bps / 230,400 bps				
	Command control				
Functions	LR8410 Link supported (dedicated connector is required)				
	Used through exclusive switching with external control interface				
(5) External contro	ol interface				
Connector	D-sub 9-pin connector × 1, 9-pin power supply compatible, also used for RS-2320				
Power supplied	OFF/ON (voltage of +5 V, max. 200 mA)				
Electrical specifications	0/5 V (2.5 V to 5 V) logic signals or contact signal with terminal shorted or open				
	Same operation as the [START/STOP] key or the [DATA RESET] key on the				
Functions	control panel				
	Used through exclusive switching with RS-232C				
(6) Two-instrumer	t synchronization interface				
Connector	SFP optical transceiver, Duplex-LC (2-wire LC)				
Optical signal	850 nm VCSEL, 1 Gbps				
Laser class	Class 1				
Fiber used	50/125 µm multi-mode fiber equivalent, up to 500 m				
Functions	Sends data from the connected secondary instrument to the primary instrument which performs calculations and displays the results.				
	· ·				

Auto-range function

Functions	The voltage and current ranges for each connection are automatically changed in response to the input.			
Operating mode	OFF/ON (selectable for each connection)			
Auto-range breadth	Broad/ narrow (applies to all channels) Broad The range is increased by one if the peak value is exceeded for the connection or if there is an RMS value that is greater than or equal to 110% f.s. The range is lowered by two if all RMS values for the connection are less than or equal to 10% f.s. Narrow The range is increased by one if the peak value is exceeded for the connection or if there is an RMS value that is greater than or equal to 10% f.s. The range is lowered by one if all RMS values for the connection are less than or equal to 40% f.s. Voltage range changes when Δ-Y conversion is enabled are determined by multiplying the range by [¹ / ₃]			

Time control function

Timer control	OFF, 10 sec. to 9999 hr. 59 min. 59 sec. (in 1 sec. steps)			
Actual time control	OFF, start time/stop time (in 1 min. steps)			
Intervals	OFF / 10 ms / 50 ms / 200 ms / 500 ms / 1 sec. / 5 sec. / 10 sec. / 15 sec. / 30 sec. 1 min. / 5 min. / 10 min. / 15 min. / 30 min. / 60 min.			
Hold function	on			
	Stops updating the display with all measured values and holds the value			

currently being displayed.
Used exclusively with the peak hold function.
Updates the measured value display each time a new maximum value is set. Used exclusively with the hold function.

Calculation function

Functions	Selects the voltage and current values used to calculate apparent and reactive power and power factor.								
Operating mode	RMS/mean (Can be selected for each connection's voltage and current.)								
2) Scaling	0.5510.00001								
VT (PT) ratio CT ratio	OFF/ 0.00001 OFF/ 0.01 to 9		9						
(3) Averaging (A\	/G)								
Functions	All instantaned					are avera	ged.		
Operating mode	OFF / Simple averaging / Exponential averaging Simple averaging Averaging is performed for the number of simple averaging iterations for each data update cycle, and the								
		c	utput data is	updated.					
Operation		a	he data up veraging iter	rations.					
	Exponential av	c	lefined by tl	he data up	date rate	and the	exponentia		
	During averagin		iveraging res n, averaged d			og output a	and save data		
	Number of a iterati		5	10	20	50	100		
Number of simple averaging iterations	Data	10 ms	50 ms	100 ms	200 ms	500 ms			
	update rate	50 ms 200 ms	250 ms 1 sec.	500 ms 2 sec.	1 sec. 4 sec.	2.5 sec 10 sec.			
		Setting		FAST		ID	SLOW		
Exponential averaging	Data	. –	10 ms 50 ms	0.1 sec. 0.5 sec.	0.8 4 s		5 sec. 25 sec.		
response rate	update ra		200 ms	2.0 sec.		sec.	100 sec.		
	These values i on ±1% when t					zed value	to converge		
(4) User-defined	calculations								
Functions	User-specifie specified calcu			nt parame	ters are	calculat	ed using the		
	Four basic me are four-arithm	asured ite	ms or const	ants with a	maximun	n of 6-dig	its; operator		
	UDFn = ITEM1 ITEMn : basic	□ ITEM2	🗆 ITEM3 🗆 IT		to 6 digito				
Calculated items	UDFn can also	+, -, *, or /				ormod in	the order of r		
Calculated items	The functions	that can b	e selected a	nd calculat	ed in rega	rds to ea	ch ITEMn ar		
	as follows: neg, sin, cos, tan, sqrt, abs, log10 (common logarithm), log (logarithm), exp, asin, acos, atan, sinh, cosh, tanh								
	calculated valu	When a UDFn with an n higher than the current UDF is encounted, previously calculated values are used							
Number of allowed calculations Maximum value setting) μ to 100.0	T / Functi	ons as a	UDFn range		
Unit	Up to 6 charac	ters in AS	CII for each I	UDFn					
(5) Efficiency and							(2)		
Calculated items	Active power va (Motor Analysis								
Number of calculations that can be performed	Four each for e	efficiency	and loss						
	Calculated iter								
Formula	Pin = Pin1 + Pi $\eta = 100 \times \frac{IPou}{IPin}$	tl Loss -		= Pout1 +	Pout2 + Po	out3 + Po	ut4		
(6) Power formula		1							
Functions	Selects the rea			ctor, and po	wer phase	e angle fo	rmulas.		
		ompatible	with TYPE1						
Formula	TYPE2 Compatible with TYPE2 as used by the Hioki 3192 and 3193. TYPE3 The sign of the TYPE1 power factor and power phase angle are								
		ed as the	active power	r signs.					
(7) Delta convers		usina a 3	P3W3M or 3	V3A conne	iction cor	warts the	e line voltage		
	wavefo	rm to a ph	ase voltage	waveform u	sing a virt	ual neutr	al point.		
Functions	Y-∆ When using a 3P4W connection, converts the phase voltage waveform to a line voltage waveform. Voltage RMS values and all voltage parameters, including harmonics, are								
	calculated usir	ng the pos	t-conversion	voltage.		adding ind	internet, an		
(8) Current senso									
Functions	Compensates t Compensation								
Compensation value	Compensation points are set using the frequency and phase difference. Frequency 0.1 kHz to 999.9 kHz (in 0.1 kHz steps) Phase difference 0.00° to ±90.00° (in 0.01° intervals)								
settings	However, the difference in time calculated from the frequency phase difference can be up to 98 µs in 0.5ns intervals								
Display fun		oroon							
	Displays a con		agram and v	oltage and	current ve	ctors bas	ed on the		
Functions	selected meas The ranges for	urement li	nes.	-					
	the connection	i can be cl	necked.						
Mode at startup	User can select (startup screen	n setting).							
Simple settings	Commercial po DC high-resolu	ution HD /	PWM / High-	frequency	upply high Low Pow	er factor/	Other		
(2) Vector display	screen								
Functions	Displays a cor and phase and		pecific vecto	or graph alo	ong with a	ssociate	d level value		
		,							
(3) Numerical disr	Jay Sucen								
(3) Numerical disp	Displays pow		red values a	and motor	measure	d values	for up to siz		
(3) Numerical disp		innels.					for up to sim		
.,	Displays pow instrument cha	nnels. ction [r 1)isplays mea notors combir 'here are four	sured value ned in the co measurem	es for the r onnection. ent line pat	measuren terns: U, I			

Display patterns	Selection display	motors combined in the connection. There are four measurement line patterns: U, I, P, and Integ. Creates a numerical display for the measurement parameters that the user has selected from all basic measurement parameters in the location selected by the user. There are 4-, 8-, 16-, and 32-display patterns.
(4) Harmonic disp	olay screen	
Functions	Displays harmonic n	neasured values on the instrument's screen.
Functions Display patterns	Displays harmonic n Display bar graph:	neasured values on the instrument's screen. Displays harmonic measurement parameters for user- specified channels as a bar graph.

(5) Waveform display screen				
Functions	Displays the voltage and current waveforms and motor waveform.			
Display patterns	All-waveform display, waveform + numerical display Cursor measurement supported			

Simplified Graph Function (1) D/A Monitor Graph

Graph measured values chosen as D/A output items in chronological order Illustrated waveforms are Peak-Peak compressed by setting time axis to data at data update rate, and data is not recorded.
Start and stop drawing with the RUN/STOP button Illustrate the displayed value during hold and peak hold Illustrated data is cleared when Clear button is pressed during changes in settings related to measured values of range and D/A output items
Maximum of 8 items
Operates simultaneously with D/A output items from CH13 to CH20 settings
10 ms/dot to 48 min/dot (Cannot be selected below the data update rate)
Autoscaling (operates to fit data on screen within screen display range with time axis) Manual (user sets displayed maximum value and minimum value)
Select horizontal and vertical axis items from fundamental measurement items and display X-Y graph
Dot illustrations are done at data update rate, and data is not recorded
Illustration data can be cleared / a total of two combinations of graphs can be displayed: X1-Y1 or X2-Y2
Gauge display, displayed max value and min value settings are allowed
X1, Y1, X2, and Y2 operate in synchronization with D/A output item settings for CH13, 14, 15, and 16 respectively

Automatic save function

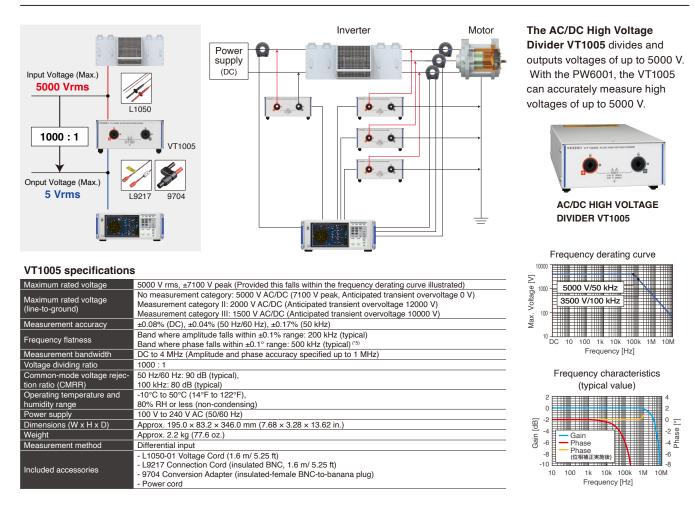
Functions	Saves the specified measured values in effect for each interval.					
Save destination	OFF / Internal memory / USB flash drive					
Saved parameters	ser-selected from all measured values, including harmonic measured values					
Maximum amount of saved data	Internal memory 64 MB (data for approx. 1800 measurements) USB flash drive Approx. 100 MB per file (automatically segmented) × 20 files					
Data format CSV file format						

Manual save function

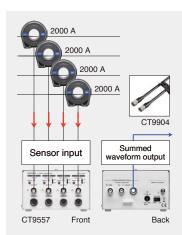
(1) Measurement	data
Functions	The [SAVE] key saves specified measured values at the time it is pressed. Comment text can be entered for each saved data point, up to a maximum of 20 alphanumeric characters. *The manual save function for measurement data cannot be used while automatic save is in progress.
Save destination	USB flash drive
Saved parameters	User-selected from all measured values, including harmonic measured values
Data format	CSV file format
(2) Waveform dat	a
Functions	(Within touch panel) Use Save Waveforms Button to save waveform data during that session Input comments for each set of saved data "Cannot be operated when waveform data is invalid during storage and automatic saving
Save destination	USB flash drive - Assign destinations for saved data
Comment entry	OFF/ON - up to 40 letters/symbols
Data format	CSV file format (read-only attribute included), binary file format (BIN format)
(3) Screenshots	
Functions	The [COPY] key saves a screenshot to the save destination. "This function can be used at an interval of 1 sec or more while automatic saving is in progress.
Save destination	USB flash drive
Comment entry	OFF / Text / Handwritten When set to [Text], up to 40 alphanumeric characters When set to [Handwritten], hand-drawn images are pasted to the screen.
Data format	Compressed BMP
(4) Settings data	
Functions	Saves settings information to the save destination as a settings file via functionality provided on the File screen. In addition, previously saved settings files can be loaded and their settings restored on the File screen. However, language and communications settings are not saved.
Save destination	USB flash drive
(5) FFT data	
Functions	(Within touch panel) Use Save FFT Spectrum button to save waveform data during that session Input comments for each set of saved data *Cannot be operated when waveform data is invalid during storage and automatic saving
Save destination	USB flash drive - Assign destinations for saved data
Comment entry	OFF/ON - up to 40 letters/symbols
Data format	CSV file format (with read-only attribute set)

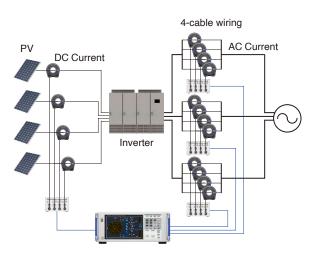
Two-instrument synchronization function

Functions	which performs calculations and d In numerical synchronization mo- meter with up to 12 channels. In waveform synchronization mode,	Sends data from the connected secondary instrument to the primary instrument, which performs calculations and displays the results. In numerical synchronization mode, the primary instrument operates as a power meter with up to 12 channels. In waveform synchronization mode, the primary instrument operates while synchronizing up to three channels from the secondary instrument at waveform level.						
Operating mode		laveform synchronization selected when the data update rate is 10 ms. only when primary device has more than 3 channels						
Synchronized items		Data update timing, start/stop/data reset Voltage/current sampling timing						
Synchronization delay	Numerical synchronization mode Waveform synchronization mode							
		Basic measurement parameters for up to six channels (including motor data)						
Transfer items	Waveform synchronization mode	Voltage/current sampling waveforms for up to three channels (not including motor data). However, the maximum number of channels is limited to a total of six, including the primary instrument's channels.						


General Specifications

Operating environment	Indoors at an elevation of up to 2000 m in a Pollution Level 2 environment
Storage temperature and humidity	-10°C to 50°C, 80% RH or less (no condensation)
Operating temperature and humidity	0°C to 40°C, 80% RH or less (no condensation)
Dielectric strength	50 Hz/60 Hz 5.4 kV rms AC for 1 min. (sensed current of 1 mA) Between voltage input terminals and instrument enclosure, and between current sensor input terminals and interfaces 1 kV rms AC for 1 min. (sensed current of 3 mA) Between motor input terminals (Ch. A, Ch. B, Ch. C, and Ch. D) and the instrument enclosure
Standards	Safety EN61010 EMC EN61326 Class A
Rated supply voltage	100 V AC to 240 V AC, 50 Hz/ 60 Hz
Maximum rated power	200 VA
External dimensions	Approx. 430 mm (16.93 in)W × 177 mm (6.97 in)H × 450 mm (17.72 in)D (excluding protruding parts)
Mass	Approx. 14 kg (49.4 oz) (PW6001-16)
Backup battery life	Approx. 10 years (reference value at 23°C) (lithium battery that stores time and setting conditions)
Product warranty period	3 year
Guaranteed accuracy period	6 months (1-year accuracy = 6-month accuracy × 1.5)
Accuracy guarantee conditions	Accuracy guarantee temperature and humidity range: 23°C ±3°C, 80% RH or less Warm-up time: 30 min. or more
Accessories	Instruction manual x 1, power cord x 1, D-sub 25-pin connector x 1 (PW6001-1x only)


Other functions


Clock function	Auto-calendar, automatic leap year detection, 24-hour clock
Actual time accuracy	When the instrument is on, ±100 ppm; when the instrument is off, within ±3 sec./day (25°C)
Sensor identification	Current sensors connected to Probe1 are automatically detected.
Zero-adjustment After the AC/DC current sensor's DEMAG signal is sent, zero-corre function voltage and current input offsets is performed.	
Touch screen correction	Position calibration is performed for the touch screen.
Key lock	While the key lock is engaged, the key lock icon is displayed on the screen.

Measure High Voltages of up to 5000 V

Measure Large Currents of up to 8000 A

The Sensor Unit CT9557 adds and outputs current sensor output from multi-wire lines. With the PW6001 the CT9557 can be

PW6001, the CT9557 can be used to accurately measure large currents of up to 8000 A (on a 4-wire line).

SENSOR UNIT CT9557

CT9557 specifications

Connectable current sensor	Current sensors are listed on p. 19 - p. 21.		
	DC		
	~ 1 kHz	: ±0.06% ±0.03%	
Summed waveform	~ 10 kHz	: ±0.10%. ±0.03%	
output accuracy ±(% of reading + % of full	~ 100 kHz	: ±0.20% ±0.10%	
$\pm(\%$ of reading $\pm\%$ of run scale)	~ 300 kHz	: ±1.0% ±0.20%	
30410)	~ 700 kHz	: ±5.0% ±0.20%	
	~ 1 MHz	: ±10.0% ±0.50%	
Operating temperature and	-10°C to 50°C (14°F to 122°F),		
humidity	80% RH or less		
Power supply	100 V to 240 V AC (50 Hz/60 Hz)		
Output connector	HIOKI ME15W (male of	connector)	
Dimensions (W x H x D)	Approx. 116 mm W × 67 mm H × 132 mm D		
	(approx. 4.57 in. W × 2.64 in. H × 5.20 in. D)		
Weight	Approx. 420 g (14.8 oz	z.)	
Included accessories	AC ADAPTER Z1002.	Power cord	

Wiring	Current	Using sensors
Single-cable or bundled	1000 A	CT6876A CT6846A
wiring	2000 A	CT6877A
2-cable	2000 A	CT9557+CT6876A×2/ CT9557+CT6846A×2
wiring	4000 A	CT9557+CT6877A×2
3-cable	3000 A	CT9557+CT6876A×3/ CT9557+CT6846A×3
wiring	6000 A	CT9557+CT6877A×3/
4-cable	4000 A	CT9557+CT6876A×4/ CT9557+CT6846A×4
wiring	8000 A	CT9557+CT6877A×4

Option CONNECTION CABLE CT9904 Cable length: 1 m (3.28 ft) CT9904 required to connect to PW6001.

Current sensors High accuracy pass-through (connect to Probe1 input terminal)

			CT6877A, CT6877A-1*2		CT6876A	, CT6876A-1*2	CT6904A-2	, CT6904A-3*2
Appearance		nce				Wideband 4 MHz	Build-to-order product CT6904A-2 CT6904A-3	
Ra	ted current		2000	A AC/DC	1000	A AC/DC	800 4	A AC/DC
Fre	equency band		DC	to 1 MHz		DC to 1.5 MHz : DC to 1.2 MHz		2: DC to 4 MHz 3: DC to 2 MHz
Dia	meter of measur	rable conductors	Мах. ф 80) mm (3.14 in.)	Мах. ф 3(6 mm (1.42 in.)	Мах. ф 32	mm (1.25 in.)
		Ourseat (1)	DC	: ±0.06% ±0.038%	DC	: ±0.06% ±0.038%	DC	: ±0.050% ±0.037%
	PW6001	Current (I)	45 Hz ≤ f ≤ 66 Hz	: ±0.06% ±0.028%	45 Hz ≤ f ≤ 66 Hz	: ±0.06% ±0.028%	45 Hz ≤ f ≤ 65 Hz	: ±0.045% ±0.027%
	Combined*1	A .:: (D)	DC	: ±0.06% ±0.058%	DC	: ±0.06% ±0.058%	DC	: ±0.050% ±0.057%
		Active power (P)	45 Hz ≤ f ≤ 66 Hz	: ±0.06% ±0.038%	45 Hz ≤ f ≤ 66 Hz	: ±0.06% ±0.038%	45 Hz ≤ f ≤ 65 Hz	: ±0.045% ±0.037%
Ì			DC	: ±0.04% ±0.008%	DC	: ±0.04% ±0.008%	DC	: ±0.030% ±0.009%
			DC < f < 16 Hz	: ±0.1% ±0.02%	DC < f < 16 Hz	: ±0.1% ±0.02%	DC < f < 16 Hz	: ±0.2% ±0.025%
			16 Hz ≤ f < 45 Hz	: ±0.05% ±0.01%	16 Hz ≤ f < 45 Hz	: ±0.05% ±0.01%	16 Hz ≤ f < 45 Hz	: ±0.1% ±0.025%
Accuracy		45 Hz ≤ f ≤ 66 Hz	: ±0.04% ±0.008%	45 Hz ≤ f ≤ 66 Hz	: ±0.04% ±0.008%	45 Hz ≤ f ≤ 65 Hz	: ±0.025% ±0.009%	
l sc			66 Hz < f ≤ 100 Hz	: ±0.05% ±0.01%	66 Hz < f ≤ 100 Hz	: ±0.05% ±0.01%	65 Hz < f ≤ 850 Hz	: ±0.05% ±0.009%
ĕ١	Sensor only (amplitude) ±(% of reading +% of full scale) full scale is rated current of sensor	100 Hz < f ≤ 500 Hz	: ±0.1% ±0.02%	100 Hz < f ≤ 500 Hz	: ±0.1% ±0.02%	850 Hz < f ≤ 1 kHz	: ±0.1% ±0.013%	
		500 Hz < f ≤ 1 kHz	: ±0.2% ±0.02%	500 Hz < f ≤ 1 kHz	: ±0.2% ±0.02%	1 kHz < f ≤ 5 kHz	: ±0.4% ±0.025%	
	Tull scale is rated	Current of sensor	1 kHz < f ≤ 10 kHz	: ±0.5% ±0.02%	1 kHz < f ≤ 5 kHz	: ±0.5% ±0.02%	5 kHz < f ≤ 10 kHz	: ±0.4% ±0.025%
			10 kHz < f ≤ 50 kHz	: ±1.5% ±0.05%	5 kHz < f ≤ 10 kHz	: ±0.5% ±0.02%	10 kHz < f ≤ 50 kHz	: ±1.0% ±0.025%
			50 kHz < f ≤ 100 kHz	: ±2.5% ±0.05%	10 kHz < f ≤ 50 kHz	: ±2.0% ±0.05%	50 kHz < f ≤ 100 kHz	: ±1.0% ±0.063%
			100 kHz < f ≤ 700 kHz	: ±(0.025×f kHz)% ±0.05%	50 kHz < f ≤ 100 kHz	: ±3.0% ±0.05%	100 kHz < f ≤ 300 kHz	: ±2.0% ±0.063%
				_	100 kHz < f ≤ 1 MHz	: ±(0.03×f kHz)% ±0.05%	300 kHz < f ≤ 1 MHz	: ±5.0% ±0.063%
Op	erating Temper	rature	-40°C to 85°0	C (-40°F to 185°F)	-40°C to 85°	C (-40°F to 185°F)	-10°C to 50°C	(-14°F to 122°F)
Ma	ximum rated vo	oltage to earth	CAT	III 1000 V	CAT	'III 1000 V	CATI	II 1000 V
Dir	mensions	229W (9 02") x 232H (9 13") x 112D (4 41") mm		160W (6.30") × 112H (4.41") × 50D (1.97") mm Cable length [CT6876A: 3 m (9.84 ft), CT6876A-1:10 m (32.81 ft)]		139W (5.47") × 120H (4.72") × 52D (2.05") mm Cable length [CT6904A-2: 3 m (9.84 ft), CT6904A-3:10 m (32.81 ft)]		
Ma	iss	CT6877A: approx. 5 kg (176.4 oz.) CT6877A-1: approx. 5.3 kg (187.0 oz.)* ²			CT6876A: approx. 970 g (34.2 oz.) CT6876A-1: approx. 1300 g (45.9 oz.) * ²		CT6904A-2: approx. 1150 g (40.6 oz.) CT6904A-3: approx. 1450 g (51.1 oz.) * ²	
Derating properties		Frequency derating		Frequency deating Frequency dea		Prequency detailing Transformed and the second and		

*1 ±(% of reading + % of range), range is PW6001 CT6877A/CT6877A-1: Add ±0.15% of the range for 40 A range or 80 A range; CT6876A/CT6876A-1: Add ±0.15% of the range for 20 A range or 40 A range; CT68904A-2/CT6804A-3: Add ±0.12% of the range for 20 A range or 40 A range.
*2 The CT6877A-1, oct876A-1, and CT6904A-3 have a 10 m cord. For the CT6876A-1, add ±(0.005 x f kHz)% of the reading for amplitude accuracy and ±(0.015 x f kHz)⁶ for phase accuracy for frequencies of 1 kHz < f ≤ 1 MHz.</p>
Eact the CT6877A 1 add (10.005 x f kHz)⁶ of the reading for amplitude accuracy in frequencies of 1 kHz < f ≤ 1 MHz.</p>

For the CT6877A-1, add $\pm(0.005 \times f \text{ kHz})^{\circ}$ of the reading for amplitude accuracy and $\pm(0.015 \times f \text{ kHz})^{\circ}$ for phase accuracy for frequencies of 1 kHz < f \leq 700 kHz. For the CT6904A-3, add $\pm(0.015 \times f \text{ kHz})^{\circ}$ of the reading for amplitude accuracy for frequencies of 50 kHz < f \leq 1 MHz.

		CT6904A,	CT6904A-1*4	CT6875A	, CT6875A-1*4	CT6873	CT6873-01*4	
Appearance		rance Wideband Build-to-order product 4 MHz CT 6904A-1				Wideband 10 MHz		
Ra	ated current		500	A AC/DC	500	A AC/DC	200	A AC/DC
Fr	equency band			: DC to 4 MHz 1: DC to 2 MHz		: DC to 2 MHz : DC to 1.5 MHz	DC	to 10 MHz
Dia	ameter of measu	rable conductors	Мах. ф 32	? mm (1.25 in.)	Мах. ф 36	6 mm (1.42 in.)	Мах. ф 2	4 mm (0.94 in.)
		a	DC	: ±0.045% ±0.037%	DC	: ±0.06% ±0.038%	DC	: ±0.05% ±0.032%
	PW6001	Current (I)	45 Hz ≤ f ≤ 65 Hz	: ±0.04% ±0.027%	45 Hz ≤ f ≤ 66 Hz	: ±0.06% ±0.028%	45 Hz ≤ f ≤ 66 Hz	: ±0.05% ±0.027%
	Combined*3		DC	: ±0.045% ±0.057%	DC	: ±0.06% ±0.058%	DC	: ±0.05% ±0.052%
		Active power (P)	45 Hz ≤ f ≤ 65 Hz	: ±0.04% ±0.037%	45 Hz ≤ f ≤ 66 Hz	: ±0.06% ±0.038%	45 Hz ≤ f ≤ 66 Hz	: ±0.05% ±0.037%
			DC	: ±0.025% ±0.007%	DC	: ±0.04% ±0.008%	DC	: ±0.03% ±0.002%
			DC < f < 16 Hz	: ±0.2% ±0.02%	DC < f < 16 Hz	: ±0.1% ±0.02%	DC < f ≤ 16 Hz	: ±0.1% ±0.01%
			16 Hz ≤ f < 45 Hz	: ±0.1% ±0.02%	16 Hz ≤ f < 45 Hz	: ±0.05% ±0.01%	16 Hz < f ≤ 45 Hz	: ±0.05% ±0.01%
Accuracy			45 Hz ≤ f ≤ 65 Hz	: ±0.02% ±0.007%	45 Hz ≤ f ≤ 66 Hz	: ±0.04% ±0.008%	45 Hz < f ≤ 66 Hz	: ±0.03% ±0.007%
Scur	Sensor only (amplitude) ±(% of reading +% of full scale)	65 Hz < f ≤ 850 Hz	: ±0.05% ±0.007%	66 Hz < f ≤ 100 Hz	: ±0.05% ±0.01%	66 Hz < f ≤ 100 Hz	: ±0.04% ±0.01%	
¥		850 Hz < f ≤ 1 kHz	: ±0.1% ±0.01%	100 Hz < f ≤ 500 Hz	: ±0.1% ±0.02%	100 Hz < f ≤ 500 Hz	: ±0.05% ±0.01%	
		1 kHz < f ≤ 5 kHz	: ±0.4% ±0.02%	500 Hz < f ≤ 1 kHz	: ±0.2% ±0.02%	500 Hz < f ≤ 3 kHz	: ±0.1% ±0.01%	
	full scale is rated current of sensor		5 kHz < f ≤ 10 kHz	: ±0.4% ±0.02%	1 kHz < f ≤ 5 kHz	: ±0.4% ±0.02%	3 kHz < f ≤ 5 kHz	: ±0.2% ±0.02%
			10 kHz < f ≤ 50 kHz	: ±1.0% ±0.02%	5 kHz < f ≤ 10 kHz	: ±0.4% ±0.02%	5 kHz < f ≤ 10 kHz	: ±0.2% ±0.02%
			50 kHz < f ≤ 100 kHz	: ±1.0% ±0.05%	10 kHz < f ≤ 50 kHz	: ±1.5% ±0.05%	10 kHz < f ≤ 1 MHz	: ±(0.018×f kHz)% ±0.059
			100 kHz < f ≤ 300 kHz	: ±2.0% ±0.05%	50 kHz < f ≤ 100 kHz	: ±2.5% ±0.05%		_
			300 kHz < f ≤ 1 MHz	: ±5.0% ±0.05%	100 kHz < f ≤ 1 MHz	: ±(0.025×f kHz)% ±0.05%		
Op	perating Tempe	rature	-10°C to 50°C	C (-14°F to 122°F)	-40°C to 85°	C (-40°F to 185°F)	-40°C to 85°C (-40°F to 185°F)	
Ma	aximum rated v	oltage to earth	CAT	III 1000 V	CAT	III 1000 V	CATIII 1000 V	
Di	mensions	ns 139W (5.47") × 120H (4.72") × 52D (2.05") mm Cable length [CT6904A: 3 m (9.84 ft), CT6904A-1:10 m (32.81 ft)]		160W (6.30") × 112H (4.41") × 50D (1.97") mm Cable length [CT6875: 3 m (9.84 ft), CT6875A-1:10 m (32.81 ft)]		70W (2.76") × 110H (4.33") × 53D (2.09") mm Cable length [CT6873: 3 m (9.84 ft), CT6873-01:10 m (32.81 ft)]		
Ma	ass		CT6904A: appr CT6904A-1: appr	ox. 1.05kg (37.0 oz.) ox. 1.35 kg (47.6 oz.) *4	CT6875A: approx. 0.8 kg (28.2 oz.) CT6875A-1: approx. 1.1 kg (38.8 oz.) *4		CT6873: approx. 370 g (13.1 oz.) CT6873-01: approx. 690 g (24.3 o.z) *4	
Derating properties		Frequency detailing		Frequency derating		Frequency density Tequency de		

*³ ±(% of reading + % of range), range is PW6001
 CT6904A/CT6904A-1: Add ±0.12% of the range for 10 A range or 20 A range; CT6875A/CT6875A-1: Add ±0.15% of the range for 10 A range or 20 A range; CT6873/CT6873-01: Add ±0.15% of the range for 4 A range or 8 A range.
 *⁴ The CT6904A-1: CT6875A-1, and CT6873-01 have a 10 m cord. For the CT6804A-1, add ±(0.015 × f kHz)% of the reading for amplitude accuracy for frequencies of 50 kHz < f ≤ 1 MHz.
 For the CT6875A-1, add ±(0.015 × f kHz)% of the reading for amplitude accuracy for frequencies of 1 kHz < f ≤ 1 MHz.
 For the CT6873A-1, add ±(0.015 × f kHz)% of the reading for amplitude accuracy for frequencies of 1 kHz < f ≤ 1 MHz.

	СТ6863-0		863-05	CT6872,	CT6872-01*6	СТб	862-05			
Appearance				Wideband 10 MHz						
R	ated current		200 /	AC/DC	50	A AC/DC	50 A	AC/DC		
Fr	equency band		DC to	500 kHz	DC	to 10 MHz	DC t	o 1 MHz		
Di	ameter of measura	able conductors	Мах. ф 24	mm (0.94 in.)	Мах. ф 2	4 mm (0.94 in.)	Мах. ф 24	mm (0.94 in.)		
	PW6001 Combined*5 Current (I) Active power (P		PW6001		6001 PW6001 accurac		$\begin{array}{c} DC\\ 45 \ Hz \leq f \leq 66 \ Hz\\ DC\\ 45 \ Hz \leq f \leq 66 \ Hz\\ \end{array}$: ±0.05% ±0.032% : ±0.05% ±0.027% : ±0.05% ±0.052% : ±0.05% ±0.037%	PW6001 accurac	cy + Sensor accuracy
			DC	: ±0.05% ±0.01%	DC	: ±0.03% ±0.002%	DC	: ±0.05% ±0.01%		
			DC < f ≤ 16 Hz	: ±0.10% ±0.02%	DC < f ≤ 16 Hz	: ±0.1% ±0.01%	DC < f ≤ 16 Hz	: ±0.10% ±0.02%		
C N			16 Hz ≤ f < 400 Hz	: ±0.05% ±0.01%	16 Hz < f ≤ 45 Hz	: ±0.05% ±0.01%	16 Hz ≤ f < 400 Hz	: ±0.05% ±0.01%		
Accuracy			400 Hz ≤ f ≤ 1 kHz	: ±0.2% ±0.02%	45 Hz < f ≤ 66 Hz	: ±0.03% ±0.007%	400 Hz ≤ f ≤ 1 kHz	: ±0.2% ±0.02%		
Acc	Sensor only (a	• •	1 kHz < f ≤ 5 kHz	: ±0.7% ±0.02%	66 Hz < f ≤ 100 Hz	: ±0.04% ±0.01%	1 kHz < f ≤ 5 kHz	: ±0.7% ±0.02%		
	±(% of reading +	reading +% of full scale) ale is rated current of sensor	5 kHz < f ≤ 10 kHz	:±1.0% ±0.02%	100 Hz < f ≤ 500 Hz	: ±0.06% ±0.01%	5 kHz < f ≤ 10 kHz	: ±1.0% ±0.02%		
	full scale is rated		10 kHz < f ≤ 50 kHz	: ±2.0% ±0.02%	500 Hz < f ≤ 1 kHz	: ±0.1% ±0.01%	10 kHz < f ≤ 50 kHz	: ±1.0% ±0.02%		
			50 kHz < f ≤ 100 kHz	: ±5.0% ±0.05%	1 kHz < f ≤ 5 kHz	: ±0.15% ±0.02%	50 kHz < f ≤ 100 kHz	: ±2.0% ±0.05%		
			100 kHz < f ≤ 300 kHz	: ±10% ±0.05%	5 kHz < f ≤ 10 kHz	: ±0.15% ±0.02%	100 kHz < f ≤ 300 kHz	: ±5.0% ±0.05%		
			300 kHz < f ≤ 500 kHz	: ±30% ±0.05%	10 kHz < f ≤ 1 MHz	: ±(0.012×f kHz)% ±0.05%	300 kHz < f ≤ 700 kHz	: ±10% ±0.05%		
				-		-	700 kHz < f < 1 MHz	:±30% ±0.05%		
0	perating Temper	rature	-30°C to 85°C	(-22°F to 185°F)	-40°C to 85°C (-40°F to 185°F), 80% RH or less		-30°C to 85°C (-22°F to 185°F)			
Μ	aximum rated voltage to earth CATIII 1000 \		II 1000 V	CATIII 1000 V		CATIII 1000 V				
Di	mensions	sions 70W (2.76") × 100H (3.94") × 53D (2.09") mm Cable length: Approx. 3 m (9.84 ft.)		70W (2.76") × 110H (4.33") × 53D (2.09") mm Cable length [CT6872: 3 m (9.84 ft), CT6872-01:10 m (32.81 ft)]		70W (2.76") × 100H (3.94") × 53D (2.09") mm Cable length: Approx. 3 m (9.84 ft.)				
М	Mass		Approx. 350 g (12.3 oz.)		CT6873: approx. 370 g (13.1 oz.) CT6873-01: approx. 690 g (24.3 o.z) * ⁶		Approx. 340 g (12.0 oz.)			
Derating properties		Frequency derailing Frequency derailing Frequency derailing Frequency derailing DC 1 10 100 1k 10k 10K 1M Frequency High		100 Frequency derating 100		0 DC 1 10 1	quency derating			

*5±(% of reading + % of range), range is PW6001 CT6872/CT6872-01: Add ±0.15% of the range tor 1 A range or 2 A range.
*6 The CT6872-01 has a 10 m cord. For the CT6872-01, add ±(0.015 × f kHz)° for phase accuracy for frequencies of 1 kHz < f ≤ 1 MHz. Custom cable lengths also available. Please inquire with your Hioki distributor.

Current sensors High accuracy clamp (connect to Probe1 input terminal)

			CT6831	СТ6830	
Appearance		NEW		NEW	
Pated current 20 A AC/DC		2 A AC/DC			
Frequency ba	and		DC to 100 kHz	DC to 100 kHz	
Diameter of me	easurable conductors		Max. φ 5 mm (0.20 in.)	Max. φ 5 mm (0.20 in.)	
U7001 Combined	Current (I) Active power (P)	U7001	accuracy + Sensor accuracy	U7001 accuracy + Sensor accurac	ÿ
U7005 Combined	Current (I) Active power (P)		Max. φ 5 mm (0.20 in.)	U7005 accuracy + Sensor accurac	су.
5		DC	: ±0.3% ±0.10%	DC : ±0.3% ±0.10%	
Sensor on		DC < f ≤ 66 Hz	: ±0.3% ±0.01%	$DC < f \le 66 \text{ Hz}$: ±0.3% ±0.05%	
Sensor on	nly (amplitude)*1	66 Hz < f ≤ 500 Hz	: ±0.3% ±0.02%	$66 \text{ Hz} < f \le 500 \text{ Hz}$: ±0.3% ±0.05%	
±(% of read	ling +% of full scale)	500 Hz < f ≤ 1 kHz	: ±0.5% ±0.05%	$500 \text{ Hz} < f \le 1 \text{ kHz} \qquad \qquad : \pm 0.5\% \pm 0.05\%$	
full scale is	rated current of sensor	1 kHz < f ≤ 5 kHz	: ±1.0% ±0.10%	$1 \text{ kHz} < f \le 5 \text{ kHz}$: ±1.0% ±0.10%	
		5 kHz < f ≤ 10 kHz	: ±5.0% ±0.10%	$5 \text{ kHz} < f \le 10 \text{ kHz}$: ±5.0% ±0.10%	
		$10 \text{ kHz} < f \le 100 \text{ kHz}$: ±30% ±0.10%	$10 \text{ kHz} < f \le 100 \text{ kHz}$: ±30% ±0.10%	
Common-Moo (CMRR)			o 100 Hz), 130 dB or greater (100 Hz to 1 kHz) it voltage and common mode voltage)	140 dB or greater (DC to 100 Hz), 125 dB or greater (effect on output voltage and common mode	
Frequency derating		Le L	<i>T</i> : Ambient temperature	$T_{x}: Ambient \\ T_{x}: Ambient \\ T_{x$	1 temperature
Output voltage	e	0.1 V/A (= 2 V/20 A)		1 V/A	
Operating temp	perature and humidity*2		o 85°C (-40°F to 185°F), 80% RH or less C to 50°C (-77°F to 122°F), 80% RH or less	Sensor: -40°C to 85°C (-40°F to 185°F), 80% F Multiplexer: -25°C to 50°C (-77°F to 122°F), 80%	
Storage temper	rature and humidity*2		Sensor and multiplexer: C (-77°F to 122°F), 80% RH or less	Sensor and multiplexer: -25°C to 50°C (-77°F to 122°F), 80% RH	or less
Standards		Safety	: EN 61010, EMC: EN 61326	Safety: EN 61010, EMC: EN 61326	5
Cable length			r to multiplexer: approx. 4 m (13.12 ft.) to output connector: approx 0.2 m (0.66 ft.)	Between sensor to multiplexer: approx. 4 m Between multiplexer to output connector: approx	
Dimensions			H × 14.2D mm (approx. $3.00W \times 0.92H \times 0.56D$ in.) H × 26.5D mm (approx. $3.15W \times 0.79H \times 1.04D$ in.)	Sensor: Approx. 76.5W \times 23.4 H \times 14.2D mm (approx. 3.0 Multiplexer: Approx. 80W \times 20H \times 26.5D mm (approx. 3.1	
Mass			Approx. 160 g (5.64 oz.)	Approx. 160 g (5.64 oz.)	

*1: $\pm(\%$ of reading + % of full scale) , full scale is rated current of sensor *2: Non-condensing

		CT	Г6846 А	СТ	6845 A	CT	6844 A	
Appearance								
Ra	ated current		1000 A AC/DC		500 A AC/DC		500 A AC/DC	
Fr	equency band		DC to 100 kHz		DC to 200 kHz		DC to 500 kHz	
Dia	ameter of measur	able conductors	Мах. ф 5	0 mm (1.97 in.)	Мах. ф 5	0 mm (1.97 in.)	Мах. ф 20	mm (0.79 in.)
		0	DC	: ±0.22% ±0.05%	DC	: ±0.22% ±0.05%	DC	: ±0.22% ±0.05%
	PW6001	Current (I)	45 Hz ≤ f ≤ 66 Hz	: ±0.22% ±0.04%	45 Hz ≤ f ≤ 66 Hz	: ±0.22% ±0.04%	45 Hz ≤ f ≤ 66 Hz	: ±0.22% ±0.04%
	Combined*3		DC	: ±0.22% ±0.07%	DC	: ±0.22% ±0.07%	DC	: ±0.22% ±0.07%
		Active power (P)	45 Hz ≤ f ≤ 66 Hz	: ±0.22% ±0.05%	45 Hz ≤ f ≤ 66 Hz	: ±0.22% ±0.05%	45 Hz ≤ f ≤ 66 Hz	: ±0.22% ±0.05%
			DC	: ±0.2% ±0.02%	DC	: ±0.2% ±0.02%	DC	: ±0.2% ±0.02%
S			DC < f ≤ 100 Hz	: ±0.2% ±0.01%	DC < f ≤ 100 Hz	: ±0.2% ±0.01%	DC < f ≤ 100 Hz	: ±0.2% ±0.01%
Accuracy	Sensor only (amplitude) ±(% of reading +% of full scale) full scale is rated current of sensor		100 Hz < f ≤ 500 Hz	: ±0.5% ±0.02%	100 Hz < f ≤ 500 Hz	: ±0.3% ±0.02%	100 Hz < f ≤ 500 Hz	: ±0.3% ±0.02%
Acc			500 Hz < f ≤ 1 kHz	: ±1.0% ±0.02%	500 Hz < f ≤ 1 kHz	: ±0.5% ±0.02%	500 Hz < f ≤ 1 kHz	: ±0.5% ±0.02%
			1 kHz < f ≤ 5 kHz	: ±2.0% ±0.02%	1 kHz < f ≤ 5 kHz	:±1.0%±0.02%	1 kHz < f ≤ 5 kHz	: ±1.0% ±0.02%
			5 kHz < f ≤ 10 kHz	: ±5% ±0.02%	5 kHz < f ≤ 10 kHz	: ±1.5% ±0.02%	5 kHz < f ≤ 10 kHz	: ±1.5% ±0.02%
			10 kHz < f ≤ 50 kHz	: ±30% ±0.02%	10 kHz < f ≤ 20 kHz	: ±5% ±0.02%	10 kHz < f ≤ 50 kHz	: ±5.0% ±0.02%
				_	20 kHz < f ≤ 50 kHz	: ±10% ±0.05%	50 kHz < f ≤ 100 kHz	: ±15% ±0.05%
				_	50 kHz < f ≤ 100 kHz	: ±30% ±0.05%	100 kHz < f ≤ 300 kHz	: ±30% ±0.05%
Op	perating Temper	ature	-40°C to 85°	°C (-40°F to 185°F)	-40°C to 85°	C (-40°F to 185°F)	-40°C to 85°C	C (-40°F to 185°F)
Ma	aximum rated vo	oltage to earth	CAT	TIII 1000 V	CAT	TIII 1000 V	CATI	II 1000 V
Di	Dimensions			(4.57") H × 35 (1.38") D mm igth: 3 m (9.84 ft)		(4.57") H × 35 (1.38") D mm gth: 3 m (9.84 ft)		.64") H × 25 (0.98") D mm th: 3 m (9.84 ft)
Ma	ass		Approx.	990 g (34.9 oz)	Approx. 8	860 g (30.3 oz)	Approx. 4	00 g (14.1 oz)
Derating properties		1400 1400 1400 1400 10000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000	min.) 100 1k 10k 10k 1M Frequency [Hz]		ntinuous)	00 00 00 00 00 00 00 00 00 00	inuous)	

*3 ±(% of reading + % of range), range is PW6001 CT6846A: Add ±1% of the range for the 20 A range, ±0.5% of the range for the 40 A range, and ±0.1% of the range for the 100 A range. CT6845A/CT6844A: Add ±1% of the range for the 10 A range, ±0.5% of the range for the 20 A range, and ±0.1% of the range for the 50 A range.

Appearance		CT6843A		CT6841A			
Ra	ated current		200 A AC/DC		20 A AC/DC		
Fr	equency band		DC to 700 kHz		DC to 2 MHz		
Dia	ameter of measura	ble conductors	Мах. ф 20) mm (0.79 in.)	Мах. ф 20	Max. φ 20 mm (0.79 in.)	
		a	DC	: ±0.22% ±0.05%	DC	: ±0.22% ±0.08%	
	PW6001	Current (I) Active power (P)	45 Hz ≤ f ≤ 66 Hz	: ±0.22% ±0.04%	45 Hz ≤ f ≤ 66 Hz	: ±0.22% ±0.04%	
	Combined*4		DC	: ±0.22% ±0.07%	DC	: ±0.22% ±0.1%	
			45 Hz ≤ f ≤ 66 Hz	: ±0.22% ±0.05%	45 Hz ≤ f ≤ 66 Hz	: ±0.22% ±0.05%	
			DC	: ±0.2% ±0.02%	DC	: ±0.2% ±0.05%	
			DC < f ≤ 100 Hz	: ±0.2% ±0.01%	DC < f ≤ 100 Hz	: ±0.2% ±0.01%	
<u>∂</u>	Sensor only (amplitude) ±(% of reading +% of full scale)		100 Hz < f ≤ 500 Hz	: ±0.3% ±0.02%	100 Hz < f ≤ 500 Hz	: ±0.3% ±0.02%	
Accuracy			500 Hz < f ≤ 1 kHz	: ±0.5% ±0.02%	500 Hz < f ≤ 1 kHz	: ±0.5% ±0.02%	
ACC			1 kHz < f ≤ 5 kHz	: ±1.0% ±0.02%	1 kHz < f ≤ 5 kHz	: ±1.0% ±0.02%	
			5 kHz < f ≤ 10 kHz	: ±1.5% ±0.02%	5 kHz < f ≤ 10 kHz	: ±1.5% ±0.02%	
	full scale is rated	current of sensor	10 kHz < f ≤ 50 kHz	: ±5.0% ±0.02%	10 kHz < f ≤ 50 kHz	: ±2.0% ±0.02%	
			50 kHz < f ≤ 100 kHz	: ±10% ±0.05%	50 kHz < f ≤ 100 kHz	: ±5.0% ±0.05%	
			100 kHz < f ≤ 300 kHz	: ±15% ±0.05%	100 kHz < f ≤ 300 kHz	:±10% ±0.05%	
			300 kHz < f ≤ 500 kHz	: ±30% ±0.05%	300 kHz < f ≤ 500 kHz	:±15% ±0.05%	
					500 kHz < f < 1 MHz	:±30% ±0.05%	
Op	perating Tempera	ature	-40°C to 85°0	C (-40°F to 185°F)	-40°C to 85°C (-40°F to 185°F)		
Ma	aximum rated vol	Itage to earth	CAT	III 1000 V	CATIII 1000 V		
Dimensions		153 (6.02") W × 67 (2.64") H × 25 (0.98") D mm Cable length: 3 m (9.84 ft)		153 (6.02") W × 67 (2.64") H × 25 (0.98") D mm Cable length: 3 m (9.84 ft)			
Mass		Approx. 370 g (13.1 oz)		Approx. 350 g (12.3 oz)			
Derating properties		§ 150 0°C ± 1 ± 80°C (Continuou) 5 1 0°C ± 1 ± 80°C (Continuou) § 100 0°C ± 1 ± 80°C (Continuou) 0°C ± 1 ± 80°C (Continuou) 0°C ± 1 ± 80°C (Continuou) § 100 0°C ± 1 ± 80°C (Continuou) 0°C ± 1 ± 80°C (Continuou) 0°C ± 1 ± 80°C (Continuou) § 100 0°C ± 1 ± 80°C (Continuou) 0°C ± 1 ± 80°C (Continuou) 0°C ± 1 ± 80°C (Continuou) § 100 0°C ± 1 ± 80°C (Continuou) 0°C ± 1 ± 80°C (Continuou) 0°C ± 1 ± 80°C (Continuou) § 100 0°C ± 1 ± 80°C (Continuou) 0°C ± 1 ± 80°C (Continuou) 0°C ± 1 ± 80°C (Continuou) § 100 0°C ± 1 ± 80°C (Continuou) 0°C ± 1 ± 80°C (Continuou) 0°C ± 1 ± 80°C (Continuou) § 100 0°C ± 1 ± 80°C (Continuou) 0°C ± 1 ± 80°C (Continuou) 0°C ± 1 ± 80°C (Continuou) § 100 0°C ± 1 ± 80°C (Continuou) 0°C ± 1 ± 80°C (Continuou) 0°C ± 1 ± 80°C (Continuou) § 100 0°C ± 1 ± 80°C (Continuou) 0°C ± 1 ± 80°C (Continuou) 0°C ± 1 ± 80°C (Continuou) § 100 0°C ± 1 ± 80°C (Continuou) 0°C ± 1 ± 80°C (Continuou) 0°C ± 1 ± 80°C (Continuou) § 100		tinuous)			

*** ±(% of reading + % of range), range is PW6001 CT6843A: Add ±1% of the range for the 4 A range, ±0.5% of the range for the 8 A range, and ±0.1% of the range for the 20 A range. CT6841A: Add ±2% of the range for the 400 mA range, ±1% of the range for the 800 mA range, and ±0.1% of the range for the 2 A range. Custom cable lengths also available. Please inquire with your Hioki distributor.

Wide-band probes (connect to Probe2 input terminal)

	3273-50	3274	3275	3276	
Appearance	00		200	00	
Rated current	30 A AC/DC	150 A AC/DC	500 A AC/DC	30 A AC/DC	
Frequency band	DC to 50 MHz (-3 dB)	DC to 10 MHz (-3 dB)	DC to 2 MHz (-3 dB)	DC to 100 MHz (-3 dB)	
Diameter of measurable conductors	Max.φ 5 mm (0.20") (insulated conductors)	Max.φ 20 mm (0.79") (insulated conductors)	Max.φ 20 mm (0.79") (insulated conductors)	Max.φ 5 mm (0.20") (insulated conductors)	
Basic accuracy	0 to 30 A rms ±1.0% rdg. ±1 mV 30 A rms to 50 A peak ±2.0% rdg. (At DC and 45 to 66 Hz)	0 to 150 A rms ±1.0% rdg. ±1 mV 150 A rms to 300 A peak ±2.0% rdg. (At DC and 45 to 66 Hz)	0 to 500 A rms ±1.0% rdg. ±5 mV 500 A rms to 700 A peak ±2.0% rdg. (At DC and 45 to 66 Hz)	0 to 30 A rms ±1.0% rdg. ±1 mV 30 A rms to 50 A peak ±2.0% rdg. (At DC and 45 to 66 Hz)	
Operating temperature	0°C to 40°C (32°F to 104°F)	0°C to 40°C (32°F to 104°F)	0°C to 40°C (32°F to 104°F)	0°C to 40°C (32°F to 104°F)	
Effect of external magnetic fields	20 mA equivalent or lower (400 A/m, 60 Hz and DC)	150 mA equivalent or lower (400 A/m, 60 Hz and DC)	400 mA equivalent or lower (400 A/m, 60 Hz and DC)	400 mA equivalent or lower (400 A/m, 60 Hz and DC)	
Dimensions	175W (6.89") × 18H(0.71") × 40D (1.57") mm Cable length: 1.5 m	176W (6.93") × 69H (2.72") × 27D(1.06") mm Cable length: 2 m	176W (6.93") × 69H (2.72") × 27D(1.06") mm Cable length: 2 m	175W (6.89") × 18H(0.71") × 40D (1.57") mm Cable length: 1.5 m	
Mass	230 g (8.1 oz)	500 g (17.6 oz)	520 g (18.3 oz)	240 g (8.5 oz)	
Derating properties	The second secon	(aury) 1000	(Buryl) rough and the second s	(900) 20 20 20 10 10 10 10 10 10 10 10 10 1	

	CT6700	CT6701	
Appearance	00	00	
Rated current	5 A AC/DC	5 A AC/DC	
Frequency band	DC to 50 MHz (-3 dB)	DC to 120 MHz (-3 dB)	
Diameter of measurable conductors	Max.φ 5 mm (0.20") (insulated conductors)	Max.φ 5 mm (0.20") (insulated conductors)	
Basic accuracy	typical ±1.0% rdg. ±1 mV ±3.0% rdg. ±1 mV (At DC and 45 to 66 Hz)	typical ±1.0% rdg. ±1 mV ±3.0% rdg. ±1 mV (At DC and 45 to 66 Hz)	
Operating temperature	0°C to 40°C (32°F to 104°F)	0°C to 40°C (32°F to 104°F)	
Effects of external magnetic fields	20 mA equivalent or lower (400 A/m, 60 Hz and DC)	5 mA equivalent or lower (400 A/m, 60 Hz and DC)	
Dimensions	155W (6.10") × 18H(0.71") × 26D (1.02") mm Cable length: 1.5 m	155W (6.10") × 18H(0.71") × 26D (1.02") mm Cable length: 1.5 m	
Mass	250 g (8.8 oz)	250 g (8.8 oz)	
Derating properties	6 5 4 4 9 00 1k 10k 100 100 10 Frequency [Hz]	9 1 1 1 1 1 1 1 1 1 1 1 1 1	

Sensor switching method

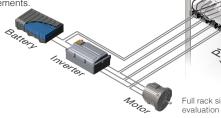
High accuracy sensor terminal: Slide the cover to the left. When connecting

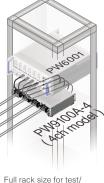
CT6877A, CT6877A-1, CT6904A, CT6904A-1, CT6904A-2, CT6904-3, CT6876A, CT6876A-1, CT6875A, CT6875A-1, CT6873, CT6873-01, CT6863-05, CT6872, CT6872-01, CT6862-05, CT6841A, CT6843A, CT6844A, CT6845A, CT6846A, PW9100A-3, PW9100A-4

Wideband probe terminal: Slide the cover to the right. When connecting

3273-50, 3274, 3275, 3276, CT6700 or CT6701

High-accuracy sensors: direct connection type (connect to Probe1 input terminal)

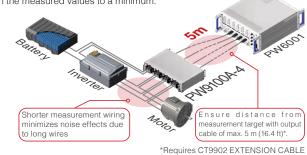

The newly developed DCCT method provides world-leading measurement bands and accuracy at a 50 A rating. Delivering a direct-coupled type current testing tool that brings out the PW6001 POWER ANALYZER's maximum potential. (A 5 A-rated version is also available. Contact us for more information.)


	AC/DC CURRENT BOX PW9100A-3	AC/DC CURRENT BOX PW9100A-4		
External Appearance				
Number of input channels	3 ch	4 ch		
Rated primary current	50 A AC/DC			
Frequency band	DC to 3.5 M	/Hz (-3 dB)		
Measurement terminals	Terminal block (with sa	afety cover), M6 screws		
Basic accuracy	(At 45 ≤ f	(amplitude), ± 0.1 ° (phase) ≤ 65 Hz) f.s. (amplitude), (At DC)		
Frequency response (Amplitude)	to 45 Hz: ±0.1% rdg. ±0.02% f.s. to 1 kHz: ±0.1% rdg. ±0.01% f.s. to 50 kHz: ±1% rdg. ±0.02% f.s. to 100 kHz: ±1% rdg. ±0.02% f.s. to 1 MHz: ±10% rdg. ±0.05% f.s. to 1 MHz: ±10% rdg. ±0.05% f.s. 3.5 MHz: -3 dB Typical			
Input resistance	1.5 mΩ or less (50 Hz/60 Hz)			
Operating temperature range	Temperature: 0°C to 40°C (32°F to 104°F), Humidity: 80% R.H. or less (no condensation)			
Effects of common-mode voltage (CMRR)	50 Hz/60 Hz: 120 dB or greater, 100 kHz: 120 dB or greater (Effect on output voltage/common-mode voltage)			
Maximum voltage to ground	1000 V (measurement category II), 600 V (measurement category III), anticipated transient overvoltage: 6000 V			
Dimensions	430 mm (16.93 in) W × 88 mm (3.46 in) H × 260 mm (10.24 in) D, Cable length: 0.8 m (2.62 ft)			
Mass	3.7 kg (130.5 oz)	4.3 kg (151.7 oz)		
Derating Characteristics	Cuaranteed accuracy range			

PW6001 Combined ±(% of reading + % of range), range is PW6001 Current (I) Active power (P) DC ±0.04% ±0.037% ±0.04% ±0.057% 45 Hz ≤ f ≤ 66 Hz ±0.04% ±0.025% ±0.04% ±0.035% Add ±0.12% of the range for 1 A range or 2 A range. Arange.

Wiring connection example 1 – Existing direct-input connection method

For more reliable wideband high-accuracy measurements. Use as an alternative to existing direct-input power meters. Use two PW9100A-3 devices (the 3 ch models) for 6-channel measurements.



Full rack size for test/ evaluation bench support

Wiring connection example 2 – Introducing a new and innovative measuring method

Shorten the wiring for current measurement by installing the PW9100A close to the measurement target. This will also keep the effects of wiring resistance, capacity coupling and other objective factors on the measured values to a minimum.

Model: POWER ANALYZER PW6001

Model No. (Order Code)	Number of built-in channels	Motor Analysis & D/A Output
PW6001-01	1ch	
PW6001-02	2ch	
PW6001-03	3ch	
PW6001-04	4ch	—
PW6001-05	5ch	_
PW6001-06	6ch	—
PW6001-11	1ch	 ✓
PW6001-12	2ch	✓
PW6001-13	3ch	1
PW6001-14	4ch	✓
PW6001-15	5ch	\checkmark
PW6001-16	6ch	✓

PW6001-16 (with 6 channels and Motor Analysis & D/A Output

Accessories: Instruction manual \times 1, power cord \times 1, D-sub 25-pin connector (PW6001-11 to -16 only) \times 1

The separately sold voltage cord and current sensor are required for taking measurements.
 Specify the number of built-in channels and whether to include the Motor Analysis & D/A Output upon order for factory installation. Please contact your local Hioki sales subsidiary or branch for changes after shipment.

Current measurement options (High accuracy: pass-through, clamp, direct connection type)

Model No. (Order Code)	Model	Rated current	Frequency band	Number of channels Cable length
CT6877A	AC/DC CURRENT SENSOR	2000 A rms	DC to 1 MHz	3 m
CT6877A-1	AC/DC CURRENT SENSOR	2000 A rms	DC to 1 MHz	10 m
CT6876A	AC/DC CURRENT SENSOR	1000 A rms	DC to 1.5 MHz	3 m
CT6876A-1	AC/DC CURRENT SENSOR	1000 A rms	DC to 1.2 MHz	10 m
CT6904A-2*	AC/DC CURRENT SENSOR	800 A rms	DC to 4 MHz	3 m
CT6904A-3*	AC/DC CURRENT SENSOR	800 A rms	DC to 2 MHz	10 m
CT6904A	AC/DC CURRENT SENSOR	500 A rms	DC to 4 MHz	3 m
CT6904A-1*	AC/DC CURRENT SENSOR	500 A rms	DC to 2 MHz	10 m
CT6875A	AC/DC CURRENT SENSOR	500 A rms	DC to 2 MHz	3 m
CT6875A-1	AC/DC CURRENT SENSOR	500 A rms	DC to 1.5 MHz	10 m
CT6873	AC/DC CURRENT SENSOR	200 A rms	DC to 10 MHz	3 m
CT6873-01	AC/DC CURRENT SENSOR	200 A rms	DC to 10 MHz	10 m
CT6863-05	AC/DC CURRENT SENSOR	200 A rms	DC to 500 kHz	3 m
CT6872	AC/DC CURRENT SENSOR	50 A rms	DC to 10 MHz	3 m
CT6872-01	AC/DC CURRENT SENSOR	50 A rms	DC to 10 MHz	10 m
CT6862-05	AC/DC CURRENT SENSOR	50 A rms	DC to 1 MHz	3 m
CT6831	AC/DC CURRENT PROBE	20 A rms	DC to 100 kHz	4.2 m
CT6830	AC/DC CURRENT PROBE	2 A rms	DC to 100 kHz	4.2 m
CT6846A	AC/DC CURRENT PROBE	1000 A rms	DC to 100 kHz	3 m
CT6845A	AC/DC CURRENT PROBE	500 A rms	DC to 200 kHz	3 m
CT6844A	AC/DC CURRENT PROBE	500 A rms	DC to 500 kHz	3 m
CT6843A	AAC/DC CURRENT PROBE	200 A rms	DC to 700 kHz	3 m
CT6841A	AC/DC CURRENT PROBE	20 A rms	DC to 2 MHz	3 m
PW9100A-3	AC/DC CURRENT BOX	50 A rms	DC to 3.5 MHz	3 ch
PW9100A-4	AC/DC CURRENT BOX	50 A rms	DC to 3.5 MHz	4 ch

* Build-to-order product

Current measurement options (Wide-band probes)

Model No. (Order Code)	Model	Rated current	Frequency band	Sensor cable length
3273-50	CLAMP ON PROBE	30 A rms	DC to 50 MHz	1.5 m
3274	CLAMP ON PROBE	150 A rms	DC to 10 MHz	2 m
3275	CLAMP ON PROBE	500 A rms	DC to 2 MHz	2 m
3276	CLAMP ON PROBE	30 A rms	DC to 100 MHz	1.5 m
CT9700	CURRENT PROBE	5 A rms	DC to 50 MHz	1.5 m
CT9701	CURRENT PROBE	5 A rms	DC to 120 MHz	1.5 m

Specifications 27

Voltage Measurement Options -

VOLTAGE CORD L9438-50 banana-banana (red, black, 1 each), alligator clip, spiral tube, approx. 3 m (9.84 ft.) length CAT IV 600 V, CAT III 1000 V

VOLTAGE CORD L1000

CONNECTION CORD

banana-banana (red, yellow, blue, gray, 1 each, black \times 4), alligator clip, approx. 3 m (9.84 ft.) length CAT IV 600 V, CAT III 1000 V

CONNECTION CORD L9257 banana-banana (red, black, 1 each), alligator clip, approx. 1.2 m (3.94 ft.) length CAT IV 600 V, CAT III 1000 V

AC/DC HIGH VOLTAGE DIVIDER VT1005 VT1005 divides and outputs voltages of up to 5000 V.

L9217, L9217-01, L9217-02 For motor analysis input and connection to VT1005, BNC-BNC. L9217: 1.6 m (5.25 ft),L9217-01: 3.0 m (9.84 ft), 1 9217-02: 10 m (32.81 ft)

OPTICAL CONNECTION CABLE L6000 50 µm, 125 µm multi-mode fiber equivalent, 10 m (32,81 ft.) length

CONNECTION CABLE 9444 For external control, 9pin-9pin, straight cable, 1.5 m (4.92 ft.) length

CONVERSION CABLE CT9900 For use with CT6862, CT6863, CT6841, CT6843, CT6844, CT6845, CT6846.

CONNECTION CABLECT9904 Cable length 1 m; required in order to connect the CT9557's added waveform output terminal to the PW6001.

PATCH CORD L1021-01 for branching voltage input, banana branch to banana clip (red × 1), 0.5 m (1.64 ft.) length CAT IV 600 V, CATIII 1000 V

PATCH CORD L1021-02 for branching voltage input, banana branch to banana clip (black × 1), 0.5 m (1.64 ft.) length CAT IV600 V, CATIII 1000 V

VOLTAGE CORD L1050-01, L1050-03 For VT1005 L1050-01: 1.6 m (5.25 ft), L1050-03: 3.0 m (9.84 ft)

LAN CABLE 9642

RS-232C CABLE 9637

9pin-9pin cross Cable length: 1.8 m (5.91 ft)

GP-IB CONNECTOR CABLE 9151-02 2 m (6.56 ft.) length

SENSOR UNIT CT9557 Merges up to four current sensor output waveforms on a single channel, for output to PW6001.

Other

The following made-to-order items are also available.

- Please contact your Hioki distributor or subsidiary for more information.
- Carrying case (hard trunk, with casters)
- D/A output cable, D-sub 25-pin-BNC (male), 20 ch conversion, 2.5 m (8.20 ft) length
- Bluetooth® serial converter adapter cable 1 m (3.28 ft)
- Rackmount fittings (EIA, JIS)
- Optical connection cable, Max. 500 m (1640.55 ft) length
- PW9100 5 A rated version, CT6904 800 A rated version

Rackmount fittings

D/A output cable

Carrying case

0 0

CONVERSION ADAPTER 9704 For connection to VT1005 BNC-to-banana plug

Supplied with straight to cross conversion connector, Cable length: 5 m (16.41 ft)

DISTRIBUTED BY

HEADQUARTERS 81 Koizumi, Ueda, Nagano 386-1192 Japan https://www.hioki.com/

Scan for all regional contact

Note: Company names and Product names appearing in this catalog are trademarks or registered trademarks of various companies.